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ABSTRACT

The fundamental concept of orthogonality of mathematical objects occurs in a wide
variety of physical and engineering disciplines. The theory of orthogonal functions, for
example, is central to the development of Fourier series and wavelets, essential for signal
processing. In particular, various families of classical orthogonal polynomials have tra-
ditionally been applied to fields such as electrostatics, numerical analysis, and many
others.

This thesis develops the main ideas necessary for understanding the classical theory
of orthogonal polynomials. Special emphasis is given to the Jacobi polynomials and to
certain important subclasses and generalizaticns, some recently discovered. Using the
theory of hypergeometric power serics and their ¢ —extensions, various structural prop-
erties and relations between these classes are systematically investigated. Recently, these
classes have found significant applications in coding theory and the study of angular
momentum, and hold much promise for future applications.
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1. INTRODUCTION

The abstract concept of orthogonality of functions (or other mathematical objects)
is a generalization of the notion of having two or more vectors perpendicular to one
another. This concept arises naturally in a wide variety of physical and engineering
disciplines. For example, the theory of orthogonal functions is central to the develop-
ment of Fourier series and wavelets which are esscntial to signal processing.

Classical Fourier series (real form) depend on the property that the trigonometric
functions sine and cosine are orthogonal (on an appropriate real interval) in a formal
sense that will be made precise later. As a conscquence, a bounded periodic function
S (x) of period 2x which satisfies the Dirichlet conditions! may be expressed in the form

f(x)~—;- aﬁ-Z(a, cos nx + b, sinnx)

where

| 4
a,,-%J‘ f(x) cosnxdx, n=0,1,2,..
-t

®
b,,-—,‘,—j f(x) sinnxdx, n=1,2,3,..
-

are the classical Fourier coefficients. These formulas can be modificd via a change of
variable to accomodate any such function of period 2L. [Ref. 1: p. 529]

This property can be used to generate other classcs of orthogonal functions -
polynomials, for example - that bchave in very structured and uscful ways such as in
generalized Fourier series. In particular, specific familics of these "classical orthogonal
polynomiais™ have tiaditionnlly been used for solving problems arising in various arcas
of applied mathematics, physics, and enginecring, among others. '

This thesis develops the main ideas necessary for understanding the classical theory
of orthogonal polynomials. Spccial emphasis is given to the Jacobi polynomials and to
certain important subclasses and gencralizations.  Much of the investigation will be

1 Dirchlet conditions: (i) In any period f(x) is continuous, except possibly for a finite number
of jump discontinuitics, (ii) In any period f(x) has only a finitc number of maxima and tinima.




made using the theory of hypergeometric power series and their ¢ —extensions. The
classes discussed in this thasis are but a small fraction of those identified and studied in
the literature.

A. CHEBYSHEV POLYNOMIALS

The Chebyshev polynomials of the first kind, T,(x), arise from an elementary trigono-
metric consideration. As such, they satisfy various propertics and identities which are
casily derived directly from their definition, many of which are observable from their
graphs (see below). This class of polynomials will serve as the model for some of the
basic structure of more general classes.

For n=y,1,2, ..., define

T,(x) = cos(narccosx), = 1<x<g1

i.e, letting x=ce30, 08 n,

(1 T cos 8) = cos né.

Some immediate consequences of (1) are |T(x)| <1 for [x| <1, with
| cos X&) = (1), 0k <n; in particular T,(1)= 1 and T,(=1)=(~1) for all
which can be seen graphically in [Figure 1.
1. Three-term Recurrence Relation/Differential Equation
From (1), we have

(2 To(x)=1 and T\(x)=x,

and by considering the identity

) cos(a + b) + cos(a—~ b) = 2 cosacos b
with @ = n0, b = 0, we obtain

4) Thpi(x) = 2xT(x) = T, (x).

Equation (4) is known as the three-term recurrence relation for T,(x) which to-
gether with initial conditions (2) imply that 7T,(x) is a polynonial of degree exactly a,
called the n* Chcbyshev polynomial of the first kind. Note that the leading cocllicient
of T,(x) is 2*! for n = 2. An inductive argument applicd to this rccursion shows tnat




Figure 1. Chebyshev Polynomials

T.(x) is an even function if # is even, and odd if # is odd (see Figure 1). The first few are
listed below:

Tx)=l, Ti(x)=x, Tx)=m2'=1, Tyx)=4x’-3x
To(x) = 8x* = 8x* + 1, Ty(x) =16x° = 20x" + 5x.

Differentiating (1) twice with respect to & yields the second order differential
equation for T, (x):

(5) (1 =x)T (%) = xT(x) + a'T(x)=0.




2. Orthogonality of Chebyskev Polynomials
Let

L3
Inn -I cos m0 cos n0db.
0

If m v n, then using (3) with a = m0, b = a0 yields

1 [ sin(m + n)0 sin(m — n)0 *
=7 m+n m=n 0‘0'

I€ m = 1 0, then by using the identity cosia = =~ (1 + cos 2a),
1 | "
4 -—[o + —sinZnO] - X
m= 9+ 2 L2

Ifm=n=0, then

. 4
10.0 -I dﬂ - K,
0
Hence,
. 1
(6) I cos m@ cosn@ df = h," 5y, ,
0
where
B! n, mmp=(
" “in/2, m=nwo
and
0,
5"”' - { mn
I, m=n

is the Kronecker delta function. Changing variablcs via x = cos 8, we have




™ j T Ty) l-; de =k b

l—x

This important property is formally known as the orthogonality relation for the
Chebyshev polynomials. The reason for this terminology will become clear in the next
chapter.

3. Zeros of Chebyshev Polynomials

Setting T, (cos@)=cosnf=0, we obtain 8=0,,=
x=Xx, ,=cos0,,,1<k<gn .

Thus all the zeros of T,(x) are real, distinct, and may be regarded as the
projections onto the interval (—1,1) of the equally distributed points 8, , on the unit
circle, as seen in Figure 2. Moreover, for 1 < k < n, an easy algebraic check verifies that
0, met <04, o < 8isy, i and therefore x, .., < X, , < Xi, o Hence, the zeros of T,,,(x)

2k—1

PR ie.,

interlace with those of T,(x). This interlacing of zeros is a striking feature of the plots
in Figure 1.

The zeros of Chebyshev polynomials, and of other orthogonal polynomials in
general, are extremely important for applications to numerical analysis, electrostatics,
and many other fields.

4. Looking Ahead

Many of the properties derived for the Chebyshev polynomials 7,(x) from their
trigonometric definition (1), extend to more gencral classes of orthogonal polynomials
via a general theory, elements of which will be deve.oped in this thesis. Some of the
many properties satisfied by these classes that we will derive include:

1. Orthogonality with respect to a weight function
Three-term recurrence relation
Second order differcntial or difference equation
Hypergeometric serics cxpression

Rodrigues’ formula

A L

Generating function.

The gencral approach we will take is to define these “classical orthogonal polynomials”
via terminating hypergeometric power serics, and from this prove (most of) the other
propertics. However, because of this equivalence, many authors choose to define a given
class using onc of these other characterizing propertics.




Figure 2. Zeros of Chebyshev Polynomials

In order to understand the general theory, it is first necessary to define the ab-
stract concept of orthogonality in an appropriately defined “space” of functions. We-
turn our attention to these fundamental ideas in the next chapter.




II. BACKGROUND

A. ELEMENTARY LINEAR ALGEBRA
1. Vector Spaces 7
Let R" denote the collection of all vectors (n-tuples), u=(q, a,, ..., a,), where
each g e R,i=1,2,..,n The standard Euclidean inner product (also referred to as the
dot product ) of two such vectors u=(a,, ,, ..., @,) and v= (b, b,, ... , b,) is given by

n
<y, v> = Za‘bl.

im]

The length, or norm, of a vector u e R" is given by

ol = /<, u> = (Z Il ’)%.

im)

Two vectors u, v e R" are perpendicular, or orthogonal, if and only if <u,v> =0,

The objective of this chapter is to extend these familiar notions to objects other
than classical Euclidean vectors, in particular, the “vector space” of polynomials defined
on a real interval [a, b].

A vector space V over a scalar field F (usually R or C ) is a nonempty set of
objects called vectors, for which the operations of addition and scalar multiplication are
defined. Addition is a rule for associating with each pair of vectorsu and v in ¥ an
element u + v, called the sum of u and v. Scalar multiplication is a rule {or associating
with each scalar ¢ in F and each vector u in ¥ an element cu, called the scalar multiple

of u by c. [Ref. 2: p. 150]
Forallu,v,we Vand c,d € F, a vector space V must sctisfy:
Additive closure. u,ve V=>u+veV
Commutativity. u+v=v+u
Associativity. u+(v+w)=(u+vj+w
Additive identity. There exists a zero vector,0e ¥V, such that 0+u=u+0=u.

“ bW -

Additive inverse. For each ue I, there exists a vector —ue V, such that
u+(—uw=(-u+u=0.

6. Multiplicative closurc. ue Vandce F=>cue V




7. Distributivity. c(u+ v) = cu+ cv
8. Distributivity. (¢ + d)u=cu+du
9. Multiplicative associativity. c(du) = (cd)u

10. Multiplicative identity. There exists a scalar 1 € F such that lu=u.

Example 1: R" (the model)

Example 2: P,[a,b] = {polynomials of degree < N on the interval [a,b]}

Example 3: P{a,b] = {polynomials on the interval [a,b]}

Example 4: C[a,b] = {continuous functions on the interval [a,b]}

Note that P,[a,b] < P[a,b] = Cla,b]. These vector spaces are sometimes re-
ferred to as function spaces.  The interval [aq,b] may be [inite or infinite (i. e.,
[a, 00), (=00, b], or (—o0, o0) ) for our purposes.

A subset U of a vector space V' is said to be a vector subspace of V ifitis a
vector space in its own right.

Example 5: P.[a,b] is a subspace of P[a,b], which in turn is a subspace of
Cla,b].

Given a set of vectors {v,,v,..,v,} in a vector space ¥, and scalars
1y C3y -0 , Cay the vector ¢V, + eV, + - + ¢, € V is said to be a linear combination of
{vi, v ..., ¥,}. The set of vectors {v,, v,, ..., V,} is said to be linearly dependent if there
exist scalars ¢, ¢, ...,¢, not all equal to zero, such that the linear combination
v, + oV, + -+ ¢,v, = 0. (Equivalently, at least one of the vectors v, can be expressca
as a linear combination of the others.) Otherwise, the set {v,, v,, ..., V,} is linearly inde-
pendent. An infinite set S = {v,, v,, ..., ¥, ... } is defined to be linearly independent if every
finite subset of S is lincarly independent; otherwise S is linearly dependent [Ref. 3: p. 8).
The vectors {v,, v,, ..., v,} are said to span V if every vector v e ¥ can be represented as
a linear combination of {v,, v, ..., v,}. In this case, we write V = span{v,, v,, ..., v,}. The
vectors {v,, v, ..., v,} form a basis for V if they are linearly independent and span V. The
dimension of V is the number of clements in any basis.

Example 6: The set {e,e,..,e,} is the scandard basis for R", where
e =(0,0,..,0,1,0,..,0) ie., the vector with a one in the i position and zeros else-
where, i= 1,2, ...,n

Example 7: The set {1, x,x?, ..., x*} is the standard basis for P [a,b]. (Lincar
independence is ensured by the Fundamental Theorem of Algebra.) The dimension of
Pp[a,b] is therefore N+1.




Example 8: The set {1, x,x% ..., x4 ..} is the standard basis for P[a,b). and
hence P[a,b] is an infinite-dimensional vector space.
2. Inner Product Spaces
An inner product on a real vector space V is a mapping

<,>¥VxV-R

such that for all u,v,w e ¥ and a, § e R, the following properties hold:
1. Positive definiteness: <u,u> 20, and <u,u> =0 if and only ifu=0
2. Symmetry: <u,v> = <v,u>
3. Bilinearity: <au <+ fv,w> ma<u,w> + f<v,w>

A vector space with an inner product is known as an inner product space.

Example 9: ¥ = R"; let constant "weights” w,> 0 be given, i= 1,2, ..., .
Foru=(a,a,..,a) and v= (b, b, ..., b), u,veV,

n
<u,v> -Za,b,w,
im}

If w=1 fori=1,2,..,n then this reduces to the standard Euclidean inner product,
or dot product. Otherwise, this is referred to as a weighted inner product.

The next two examples are commonly applied inner products on f{unction space,
and are analogues of the previous example. We assume a given weight function
w(x) > 0 in (a,b), integrable in the first case (c.g., continuous for [a,b] a finite interval).

Example 10: ¥V = P,[a,b], Pla,b], Cla,b]

<fr8> = [ fptmds

Example 11: V= P, [ab]

N
<f.8> =) fx)glwlx)

x=0

(Positive definiteness is ensured by the Fundamental Theorem of Algebra.)




The norm induced by the inner product is given by [ju]| = ./ <u,u> .2
Example 12: For the inner products of Exainples 10 and 1! therefore

Il = (Jb [£() T wix) dx)'“ and

N
1= ( D LA T wi) >"’,
Xw()

respectively. These are sometimes referred to as "L’-norms.”

Two vectors u,ve ¥ are said to be orthogonal, denoted uly, if and only if
<u,v> =0, The vectors u and v are said to be orthonormal if ulv and
lujl == Jjvil = 1. Note that the orthogonality of vectors in a space is determined by the in-
ner product being used.

The two examples which follow refer back to Chapter I, Section A.1.

Example 13: Formula (6) shows that the functions {1, cosx, cos2x,...} are
orthogonal on [0, ] with respect to the uniform weight function w(x)= 1. A similar
computation shows that the same property holds on [—n, #] with respect to the weight

function w(x -—,l,- , L.e,

<f,g> =%- “‘”f(x)g(.t)a'x.

One advantage of preferring this inner product over the standard one lies in the com-
putation of norms. Using }fl=/<f, f> , we have |1 =2 and || cosnx| =1 if
n 2 1. Hence the functions { 1/2, cosx, cos 2x,...} are orthonormal on [—=, ] with
respect to the inner product above. Similar statements hold for the integral of a product
of two sine functions on [—r, ], as well as for the product of a sine and a cosine.

Example 14: By (7) the Chebyshev polynomials {7,(x}} form an orthogonal
class with respect to the inner product of Example 10 above on [ —1,1] with the weight
function w(x) = (1 — x3)™"2,

2 Recall that <u,u> > 0. We remark that in the same way we defined inner product earlier,
it is possible to define a gencral norm on a vector space which is not induced by an inner product.

10




We remark here that Examples 10 and 11 can be unified into a single inner
product on a "polynomial” space V via

<f8> = [ 116800 ot

where da(x) is 2 positive Lebesgue-Stieltjes measure on a measurable set £ possessing
finite moments, i.e., x* da(x) integrable, n =0, 1, 2, .... In Example 10, E = [a,6] = R and
dx(x) = w(x)dx; the resulting expression is known as a continuous inner product, while
in Example 11 the set E consists of a finite number of peints {0, 1, ..., N} <R, and the
associated measure gives rise to a discrete inner product.

B. FOURIER SERIES

Letve ¥, and U be an n-dimensional subspace of ¥ having some orthonormal basis
{u, ..., u,}. (Any basis can be orthonormalized via the Gram-Schmidt process - see next
section.) The vector v can be resolved into & sum of two vector components:

1) va(v—w) 4w

where we U and (v—~w) L U. (See Figure 3.) The vector w is referred to as the
orthogonal projection of v onto U. Since the vector (v —~ w) is orthogonal to every vector
in U by construction, it follows that for each j=1,2,...,n, < v—w, u,> =0, or

2 <V, u>=<w,u>,
Moreover, since it lies in U, vector w can be expressed as some linear combination of
{u,..,u}:

n

]

Take the inner product of both sides with u, for eachj = 1, 2, ..., n. From the assumption
that <.u,, u, > =0 unless i = j, we have the property that

<w, l|j> -Cj<|.|j, IIJ>.

Thus,

(3 g=<v,w>

11




via (2) and the assumption that < u,, u, > mju =1,
Thus,

(@ wa) <v,uy>y
tm}

and this vector represents the “best approximation® in U to ve V in the sense that of
all vectors z e U, it is the projection vector w e U which uniquely minimizes the distance
i v=z|. .
Suppose now that U is an infinite-dimensional subspace of ¥V (also infinite~
dimensional), having orthonormal basis { w,, ..., W, ... }. Then from (1) and (4)

R
v-(v—w)+z <v,uy>uy
=]

we may write

o0
() V-Z<v.w>u¢
=]

in the sense that

©) Tim || v=w [ =0,

i.e., the norm of the “residual vector” (and hence the vector itself) v—w — 0 as
n = oo.'Formula (5) is known as the generalized Fourier series fot v e V with respect
to the orthonormal basis { u, }i=,. The coeflicients given in (3) are called the generalized
Fourier coefficients of v e V. Statement (6) is known as the norm convergence property
of Fourier series, and the “minimization property” mentioned above extends to this
infinite-dimensional case.

Example 15: Let V=([ab], and {d{x)}= be an orthonormal basis of
eigenfunctions (sometimes referied to simply as an eigenbasis ) of V. Thenf e V has a
Fourier series representation

o0

FE~) adf)

=0
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v U-lpll\{ul XXy .“n}

Figure 3. Best Approximation

with Fourier coefficients

@ Gm<f, $> = f ’ £) i) wix) .

In this function space context, norm convergence

([

£ =) o éf

1 1
dx) n-O
=0
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is referred to as mean square convergence, and is the least squares principle in regression
analysis.

In particular, if ¥ is equipped with the inner product of Example 13 and
orthonormal basis

{@(x)} = {1/2, cosx, cos2x,.., sinx, sin2x,..)}

on [~=,n] (see Example 13, Section A.2), then a suitable function fe ¥ (and its
2r-periodic extension on R ) has a classical Fourier series

f(x)~-;—a°+2(a,, cos nx + b, sinnx)
nw=l

where

a,= < f, cosnx > -% J.'f(x) cos nx dx

by= < f, sinnx > -% ‘rf(x) sin nx dx,

as indicated in the Introduction.

C. GRAM-SCHMIDT ORTHONORMALIZATION

The Gram-Schmidt process orthonormalizes any sct of linearly independcnt vectors
in an inn ¢ produc: space. This method will be used in later sections for different inner
praducts on tne vector space Pla,b].

Begin with an inner product space ¥ and any set of vectors {v,, ¥, ... , V,, ... }, finite
or infinite, such that any finite number of elcments of this set are linearly independent.
Recursively define a new set of vectors {u, u,, ..., u,, ...}

Ye
GWm—m k=]l 2 ., ,n,,..
= Tyl "

where y, = v, — w,, with3

9
3 By convention, 3 a, = 0, giving w, = 0.
in}
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R=1
wk-z<'k’ul>ul'
im)

These new vectors {u, u, ..., 4, ... } are orthonormal by construction and span the
same space as the original vectors. Note that this process occurs in two stages:
orthogonalization and normalization. The orthogonalization is accomplished by sub-
tracting w,, the orthogonal projection of v, onto the subspace spanned by
{u,, ¥y, ... , 4}, The component of v, which remains, decnoted above as y,, is then
orthogonal to the vectors {u,,u,, ..., u,_,} as shown in Figure 4. The normalization is
then achieved by dividing y, by its norm, thus giving it unit “length”.

1. Legendre Polynomials

Example 16: Let V= P[~1,1] with basis {l,x,x%..,x, ..} and uniform
weight function w(x) = 1. The inner product is then given by < f,g > = [ ! Sx)glx)dx.
The Gram-Schmidt process yields the set

m}:.-{p.(x)}:".o-{T‘.;-.\/%_x. O (2-1), i‘f—“—(e_%x)....}

as an orthonormal basis for P{ —1,1]. Since this set is lincarly independent, we can
standardize the set by taking scalar multiples of these polynomials so that 2,(1)=1.
Members of the resulting orthogonal sct

(PN = {15 4 (36 - 1) (5 - 32), ..}

are known as the Legendre polynomials on [ -1,1]. If the normalized Legendre
polynomials { p(x) }»2, are used as the orthogonal eigenbasis for a Fourier series, the re-
sulting expansion is often referred to as a Legendre series representation; when
Chebyshev polvnomials are used, we obtain a Chebyshev series rcpresentation, etc.

The Gram-Schmidt process can always be used in this way to generate a class
of orthogonal polynomials with respect to a given inner product (i.e., weight function)
on a real interval. When using the Gram-Schmidt process from the basis
{1, x,x,...,x, ...}, the orthogonalization stage producing y, results in a sct of monic
polynomials, i.c., the lcading cocfficient of cach polynomial is one. In the normalization
stage, we are dividing by the norm || y, | > 0. Thus the lcading cocflicient of polynomials
in an orthogonal class is strictly positive. In the next chapter, we will examine other

15




span{u ,u3}

/

’--_--‘- -

Uy

Figure 4. Orthonormalization

ways to define these classes. It is the structure and applications of certain of these
classes with which we will primarily be concerned.

D. THE GAMMA FUNCTION

The gamma function ["(x) is a fundamental mathematical object that appears fre-
quently in the representations of orthogonal polynomials as well as in many other ap-
plications. This “special function® was developed as a generalization of the factorial
function of the natural numbers. As we will see, the gamma function has the value
(n = 1)! for the positive integers » but it is defined for noninteger values as well.

A conventional definition for the gamma function is

16




(8) [(x) = Iuc":”'dt , >0,
0

The potitivity of x ensures that this improper integral converges. We now develop some
fundamental properties of the gamma function. Integration by parts in (8) yiclds

) [(x + 1) = x[(x).

We now introduce the Pochhammer symbol or shifted factorial, (a), , to simplify our
notation. For n > 0, define

(@py=ala+ 1)Ya+2)..(a+n=1), ifn>1

and (a), = 1. Letting a = 1 gives (1), = (1)(2)(3) ... (n) = #!. Note that for a negative inte-
ger, (=m), =0 if n>m>0. The shifted factorial can be defined for negative subscripts
but we will not need this in our work with polynomials.

Iteration of (9) n times yields

(10) [(x + n) = (x)\I(x)

for every positive integer n. Using this property, the gamma function can be extended
to include negative real numbers by defining

(1) MO = 5= Tl +n) for —m<x<-n+l.

Since this expression is undefined when x is zero or a negative integer, the gamma
function is not defined for those values.

Letting x = | in (8) and computing directly, we have I'(1) = 1. It then follows that
[(n+1)=n! by letting x =1 in (IQ). Furthermore,

l‘( %) -J‘ PG = ZJ e du - Jx
0 0

where the second integral can be cvaluated by standard methods involving multiple in-
tegrals.

17




Finally, we define a generalized binomial coefficient as follows. For x and « non-.
negative integers, define

For nonintegral «, define

(x-!-a) - (¢+I)£_ - [(x+a+1)
x (N, C(x+1) F(a+1) *

1. The Beta Function
An integral related to the gamma function defines another useful function called
the beta function which is given by

1
(12) B(x, y) = i Sl - 0"

for x,y > 0. We now establish an important connection between the beta and gamma
functions. We start with an identity casily verified from (12):

(13) B(x, y+ 1) = Bx, y) = B(x + 1, »).

Also from (12) _

1
Bx+1, y)-j (1=

0

which when integrated by parts gives

B(x+1, y)--';-a(x, y+1)

Substituting into (13), we obtain

Bx, 9) =S5 Ble, y+ 1)

which when iterated yields

18




y)n _ (x + ¥)n 1 x=loy n+y—1‘
( ) ( )n B(xv y+ ") = (y—)n J; t (l t) dr.

Changing variables from ¢ to -,L,-,

(x + y)n x=1 t \n+y=1
(14) Blx, y) =20 j pei() =L g,
Ot Jy =)
Taking the limit as 7 — oo, and using the fact that 'l‘i.t;r_)(l— -;',- )" = ¢~!', we have
(x + Y)n
(15) B(x, y)= I'(x) lim ————-.
: n=oo (y),n"

(The fact that we can pass the limit through the integral on the right can be mathemat-
ically justified.) If y =1, then (15) gives

B(x,1) = I‘(x) llm (—+—i)£- .
ntn

By direct evaluation using (12),

Hence

which can be written as
! X
I'(x) = lim N __

nsoo x(x + 1),

Noting that x(x + 1), = (x),,, = (x).(x + n), we have

19
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Xx-=1

nn" n
I(x) = hm LT )

which gives the form

X=1

(16) [(x) = lim <2

n=o0  (x),

(Equation (16) was Euler’s original definition of the gamma function. A separate “esti-
mation” argument may be used to show that this limit mathematically exists.) Thus by

(15),

(x + )
n' x4+y-1

(P

y—-l

B(x, y) = r(x) llm
nn
Then by (16), we have the useful identity

FC(y)

(7 B, ) ="Fr

We will find this identity useful in understanding the Jacobi polynomials in
Chapter [V, where it becomes necessary to evaluate a related integral:

1
(1=x)* (1+x)? dx.
-1

We remark here for future reference that the formal change of variable x = 1-2r can be
used to transform this integral into

, .
P _[ ¢ (1=0f dr= 27" Blat1, p+1)
0

grH+1 (a+1) T(8+1)
- MNa+0+2)
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II. GENERAL THEORY OF CLASSICAL ORTHOGONAL
POLYNOMIALS

In this chapter, we examine some of the characteristic properties associated with
classes of orthogonal polynomials. Some of these pronerties provide alternate means
of defining a class. These alternate definitions often provide a straightforward way of
producing a specific result that may be very difficult to derive otherwise.

Throughout this chapter, we let {p(x)}=, denote a set of real polynomials with
p(x) of degree n, i.e.,.

1

()] PaX) =k x" + 5, X"+, k>0,

Recall that these polynomials are said to be orthogonal on an interval [a,b] with respect
to a continuous weight function w(x) > 0 on (a,b) if

b
@ < mo2n > = | PalpaIRI = 7 B

where the normalization A" # 0 is chosen to simplify the expression of certain formulas.
Note that since

b
Ionl = [ Lpaofwiaiee = i,

it follows that 4, > 0.

A. POLYNOMIAL EXPANSIONS .
We begin by showing that any real polynomial ¢,(x) of degree m on [a,b] can be
written as a linear combination of orthogonal polynomials { p,(x)}m, :

m

©) | GnX) = ) 0 ()

{=0

for constants ,,,, i=0,1,2,...,m.
The proof is by induction on the degrece m. Since ¢,(x) is a real polvnomial, we
write

21




m=1

gm(x) = anx™ + b X" + ..

‘where a, #0. For m =0, (3) reduces to g, = o, k, using the form for p,(x) given in (1)
and a,, is uniquely determined.
For the induction hypothesis, suppose that for m > i, we can write any polynomiul
of degree m — 1 as a linear combination of { p,(x) s
m=1
Gy (X) = Z @ m-1 px).

=0

Since ¢,(x) = (@u/kn)Pn(X) = go_,(x) is a polynomial of degree m— 1 the induction hy-
pothesis implies there is a representation
am m-1
o) = (£ ) )= Y 820

(=0

Now set «,,,, = (a,/k,) and the result (3) follows. [Ref. 4: p. 33]
Using the theory of Fourier series developed earlier, we next determine the cocffi-
cients «,, explicitly. Fori=0,1,..,m,letc,=aq, ,,,/\/'l; and let

(ﬁ,(X) " P (x) " \/_ Pl(x)

Then by construction, { @(x) }i is an orthonormal set of polynomials. Writing (3) as
m -
qm(x) = Z cl,m ¢I(x)v

im0

we see that the right-hand side can be interpreted as a (terminating) Fourier expansion
of ¢,(x). Hence the results of Example 15 in Chapter 11, Section B may be applicd. In
particular, by (7) in that section, the coefficients ¢, are given by

b
m= < G 81> = | 4nl2) ) W) i
a
Changing back to the old variables,
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b
Um=ly < Qp, 0> = hlI qm(x) plx) wix) dx.
a

We are now in a position to show that the orthogonality property

]
@ [ endpmtemtordic=0 ,mbn

can be expressed equivalently as,

b
(5 I 2r(X) x"w(x)dx =0, m<n.

[
To see (5), substitute the form (1) for p.(x) into (4) where m < n. The linearity of the
integral gives (5). On the other hand, since x™ is a polynomial, we can write x" as a
linear combination of the orthogonal polynomials, so (5) gives (4). Note that (S) implies
each p,(x) is orthogonal to every polynomial of lower degree. [Ref. 4: pp. 33-34]

B. THREE-TERM RECURRENCE RELATION
The three-term recurrence relation is a useful result which holds for any three con-
secutive orthogonal polynomials:

(6) p,,(x) = (An X +.Bn)Pn—l('x) -G n—!(x) yn=2,3,4,..

where A,, B,, and C, are constants given by

k
Ay=—"—>0, B,,=A,,<

Sn _ Sp—1 ) - Knkn_z Mn_y
k voon
n-1

% TR

The recurrence relation is valid for n =1 if p_, = 0 with C; al:bitrary. In this case, the
formula for A4, also holds for n= 1. (In the contrapositive form, this statement is a
powerful tool for showing that a polynomial set is not orthogonal.) [Ref. §: p. 234]

To prove this, we begin by considering p.(x) — (k,/k..)) x p...(x), a polynomial of de-
gree no greater than (n—1). We expand it in terms of the orthogonal polynomials
{p(x)}i% via the technique of the previous scction to obtain
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-

A=

X Ppi() = D By PHE).
=0

@) Pa(x) ~

The coeflicients «,,., are determined by
kn .

) Rppay = = Iy k <xXppi(X), Ux)> ign-1
=1

Because

b
<X Ppi(*) s px)> = f. X Ppr(%) pAx) W(x) dx = < p,_(x),x pfx)>,

it follows that for i < n— 3, x p(x) is of degree no greater than (n — 2). Hence
<Ppi(X) , X p(x)> = <xpp (%), px)> =0 ,i<n=3,

since p, (x) is orthogonal to every polynomial of lesser degree. Thus the constants
Rypets Raats oo » An3ae &re all zero, leaving a, ,,., and a,,,,. With this knowledge, (7)
becomes

ky
Pn(x) - n—l xPn_|(-") - “n-z,n—an-z(x) + an—l.n—ll’n—l(x)

Setting A, = kJk.,, B,=a, ., and C,= —a,_,,., then rearranging terms gives (6).
To determine C, explicitly, we write

==y gpy ™= Aphyz < Ppy(X) 3 Pna(X)>
from (8). Since

xp,,_z(x) - kn_zxn-l + o

k
- Tn;z- [kn-lxn-l + e ]
n—1
n~2

1
- [pn-l(x) + Zﬂ/,.-z P/(x)]'

- J=0

we can write
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=2

Com byt S <) P + Z Binea pf0)>.

Using the properties of the inner product and the orthogonality property of the
polynomials, we obtain

An__ Kaky
<Pn-l(x)ol’n-l(x)> - Ign_j- Ay (k )2 :"-T
- =1 A=

A,
C n-zA

as given in (6). [Ref. é: p. 8]

Into equation (6) we substitute the expanded forms of the polynomials
P(X) s Pai(%), Pa(x) from (1) and the constants 4,, C, from above. Equating coeffi-
cients of x! gives B, Since £,>0and h, > 0, it follows that 4,>0and C,> 0 and the
proof is complete.

The nonnegativity of the constants A4, and C, is important for the converse of the
result in (6). Favard showed that the existence of a three-term recurrence relation in the
form of (6) implies that the polynomials of the set are orthogonal with respect to some
weight function over some interval using Stieltjes integration [Ref. 7).

We observe that in order to gencrate the polynomials of an orthogonal class with
the recurrence relation (6), we need the sequences of constants 4, , B,, and C, together
with two of three consecutive polynomials in the class. Other techniques provide what
some authors call a pure recurrence relation requiring only two of three consecutive
polynomials to define the class, because the constants as functions of # are contained
explicitly in the recurrence relation. The recurrence relation derived in Chapter I, Sec-
tion A:l for the Chebyshev polynomials is an example.

C. CHRISTOFFEL-DARBOUX FORMULA®
The Christoflel-Darboux formula is an important identity vhich can be derived from
the three-term recurrence relation. The identity is

k . . ()P
®) Zhl px)p(y) = Pnas1(X)Paly) _5 (X)Pnsr( y)

To prove (9), note that from (6) we have

Prai(x) = (A1 x + By )pfx) = Cyapp-i (%)
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which we rearrange to give .

B C
(10) xp/(x)-‘kt'mn(x)—7%!’;(:)4-7{;—:7;-1(:)
and similarly
1 By Cie1
(1 yefy) = mpm(y) - ;m-p,(y) + mm_;(.v)-

These recurrence relations are valid for j= 0 if we set C, = 0 and p_,(x) = p_,(3) = 0.
Multiply (10) through by p(y) and (11) by P(x), subtract the rasults, and then mul-
tiply through by 4, to obtain

hk
by (x = 3) o) 2A ) = =L [ Ppr(PA D) = B (P)f2)]
k,“

h_, k
=5 (2 ) = s )]

+

Summing over j from 0 to n yields a telescoping series

. A, k
(x=y) Z :h, PARPAY) = 7= Pnsr(X)Pn( ) = Pax)Pas1(9)]
M N1

from which the identity (9) follows. [Ref. 4: p. 39)

Now subtract and add the quantity p,(x) p,.,(x) to the numerator of the right-hand
side of (9) and let y tend to x to obtain a limiting case of the Christoffel-Darboux for-
mula:

n+)

; i Ky
(12) 2 o) T = = (i (9 2a) = a0 (9]
/=0

We will use (12) in the next section,

D. ZEROS OF ORTHOGONAL POLYNOMIALS

In Chapter I, we observed that the zeros of the Chebyshev polynomials {7,(x)} are
real, distinct, and lic in the interval (~1,1). This principle extends to any class of
polynomials orthogona! on the real interval [a,6].
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To sce this, choose n> 0 and suppose that p{x) is of constant sign in [a,b). Then
< pf(x), plx) > » 0, which contradicts the assumed orthogonality. Thus by continuity
(and the Intermediate Value Theorem) there exists a zero x, € (a,b).

Suppose that x, is a double root. Then 2.(x)/(x — x,)* would be a polynomial of de-
gree (n — 2) and so

0= <py(x), Pa(®I(x =2} > = <1, (Pu(x)/(x x))}> >0

which is a contradiction. Thus the zeros are simple. -
Now suppose that p,(x) has exactlyj zcros x, Xy, ..., X; @ (a,b). Then

PaENx = 2 XX = %) or (6 = X) = Gy (D) = 1) = ) o (2 = )’
where q._, (x) does not change sign in (a,5) and
<o), (6 = 2 )x = 2p) o (X = 3)> = <oy (1), (=X x =) o (r =)'
Since
<oy (), (k=) x = x)* . (x = x> #0
and
<puX), (x = x))x = X)) ... (x = x))> =0 forj<n,

then it must be that j = n. The Fundamental Theorem of Algebra precludesj > n and so
we conclude j = n. [Ref. 5: p. 236]

Thus all the zeros of p,(x) are real, simple, and lie in the interval (a,b), and so may
be ordered

a<x,',,<xz_,,<---<x,,,,<---<x,,',,<b.

The interlacing of zeros of p(x) and p,.,(x) follows from the ChristofTel-Darboux for-
mula. Recalling that the leading cocflicient &, is positive for all p(x), then (12) gives

(13) Prs (%) pa(x) = P'n(x) P,.+|(x) >0, —oo<x<oo.
Let u and v be adjacent zeros of p,(x). Then

(C) . P (W) ' a(v) <0
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since the zeros are simple. At these zeros, inequality (13) reduces to
=P'n() Pps1(4) > 0

and
=P'a(¥) Pt (v) > 0.

Multiply these two inequalities together with (14) to conclude
Prii(4) i (v) <0,

$0 p,.,(x) has a zero between each pair of consecutive zeros of p,(x).
Now let x,, denote the largest zero of p(x). Observing that p,(x) = oo a8 x = oo,
we must have p’,(x,,) > 0, and so by (13)

Pre1(Xan) <0

But p,.(x) = oo as x = oo, 30 p,,(x) must have a zero to the right of x,,. Similarly,
Pi(x) must have a zero to the left of x,,, the smallest zero of p,(x). Thus all #+1 zeros
of p...(x) are accounted for and interlace those of p,(x) [Ref. 8}:

a<x“.+‘ <x“<xz"+| <"'<ka‘ <xka<xk+|'.+| <"‘<x,m+‘<x,u<x,,+,a+, <b.

E. GENERATING FUNCTIONS
The function Ax,f) having a formal power series expansion in ¢

Rt) =) K"
nwl

is said to be a generating function for the set { fi(x)} [Ref. 9: p. 129). For an appropriately
chosen generating function, the generated set { f;(x)} is a class of orthogonal polynomials.
By defining a class in this way, properties of the polynomials can be dcrived from the
generating function itself.

For example, consider

(15) Fixg)m (1= 24+ )P = ) )"
nwl
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which for fixed x is the Taylor series of Flx,) centered at t = 0. If we restrict x to the
interval [ —1,1], then by considering the singular points of Flx,t), we may conclude that
the series is convergent for |¢] <1 [Ref. 4: p. 28). Thus we can determine f(x) for
n=0,1,2,..by

(16) Six) = n, = L[ - 20 4 A,
Equation (16) yields fi(x)=1, fi(x)=x, £ -—;-x"- ; , etc. We also note from

(16) that

(1) = n. a"[“ 0" T
-:!-[n! (=0

-l‘

We now derive some basic properties of the f;(x) from the generating function in (15).
1. Recurrence Relation

Differentiating (15), we find
(17 BE (1 - 2t 4+07) Zj;,'(x)t
LI
(- -]
(18) LE (= (1 = 20t 4 £ Y ™,
n=)
Since (x — ) 6F ‘LF_ =, we have

(e =) LG = 1) rfy()"™ =0

nml L]

which becomes

i xfy' (" - i nfo(x)" = i};'(x)l"“.

nw) nm| Rm)




Since fi(x) = 1, we can start the sum on the right side at # = G, then re-index so that it
starts at n = | again. We then find

D Lfi ) =nf) ] = D fimy ()"
Ll Am)

Equating coeflicients of ¢ then gives

(19) X3 (X)=nfi(x)=fo_,(x), n2L.

Rewrite (17) as

(20) (=242 P> ™, w0,
Rm]

Substituting the appropriate expressions from (20), (18), and (15), respectively, into the
identity

(=1 =200+ )P~ @) (x = (1 = 200+ )P m (1 = 220 4+ )12,

now gives
(1- ‘I)an'(x)t"" - (2:)2 AL - Z L0
which, upon rearranging, becomes
thn ()" = Zﬁ.n ()" = Z 2 fy(x)" = Z};(x):".

Equating coeflicients of ¢* and gathering terms yields’
@1 @+ ) fox) =fop) ) =fa (), m2 L.
Substituting (19) into (21) gives
X fo' (%) = fryy (x) = (2 + 1) f3(x)

which by a shift of index from n — n — | becomes
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(22) Xfng ()=l =nfr (X)), n22.
Substituting again from (19) gives
(23) (2 = 1) () = mx fy(x) = oy (3).
Multiplying (19) through by (x* — 1), we have
x(x? = 1) £'x) = n(x* = 1) fu(x) = (x2 = 1) £y ().
Now substitute for (x? — 1) /'(x) and (x? — 1) /., (x) from (23) and gather terms to get
(29) nf(x) = (2n = 1) x fo_ (X)) = (n = 1) fa(x), n22.

Equation (24) is a three-term recurrence relation for {f(x)}. The advantage of
this form is that beginning with f;(x) and f;(x), we can now generate any member of
{fix)} by iterating (24) and thus avoid the differentiation in (16). Note that since
fi(x)=1, fi(x)=x, (24) implies that {£(x)} is a set of polynomials. [Ref. 9: pp.159-160]

2. Ordinary Differential Equation
We continue the same line of reasoning to extract additional information about

{£ix)}. Differentiating (22) yields
(25) X fry (X) = £ (%) = (n 4+ 1) foy (%)

From (19) we have £, (x) and, after differentiating, f._, (x). Substituting these ex-
pressions into (25) gives

x [xfy"(x) = (n = DS ()] = f7(x) = (n + Dlx fy'(x) = nfy(x)]
which when rearranged becomes a second order ordinary differential equation
(26) (1 = %) £3"(x) = 2e £ (x) + nln + 1) fy(x) = 0.

The { £(x)} are solutions of (26) for n =0, 1, 2, .... [Ref. 9: pp.160-161]
3. Orthogonality
Rewriting (26) as

27) < (1= #) 00 + nln + D0 =0
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we recognize the structure of a Sturm-Liouville eigenvalue problem. Since the points
x = + 1 are singular points, we require that f(x) and £;'(x) be finite as x — & 1. From the
associated theory of the singular Sturm-Liouville problem, we conclude that the {A)
are orthogonal on the interval [ —1,1] with weight function w(x) = 1.

Alternately, we combine (26) with

L [(1= ) S (] + mim + 1 folx) = O

where n # m, to obtain

Sl 2 [(1 =) @)] =0 2= [(1 - #) fu0)]

28
+ [n(n + 1) — mlm + 1)]/3(x) Sm(x) = 0.

Since

?‘i— [(l = ) ) ') -fm'(x)ﬁ‘(x)}]
=L [ fo{(t - ) e} = (1 - <) ')} ]
i P -sa £ - 74)

we can write (28) as

fx‘ [(l = ) S f3'(%) -fm’(x)./}.(x)}] + [n = m? + 1= m]fy(x) frn(x) = O

or

(n = m)(n+ o+ 1) £00) fn) = = [ (1 = ) S () 0) = Sl )

Integrating from x = -1 to x = |, we obtain
| 2 |
(= mtn-+-m+ [ £t e = [(1 = U D0 =Sl .
Since (1 — x?) =0 at x= 1 [, we have
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n=—min+m+1) l So(x) fn(x)dx = 0.
-1

Recalling that n # m, we conclude

' ) o =0

i.e., the polynomials {f(x)} are orthogonal on the interval [ —1,1] with respect to the
weight function w(x) = 1. [Ref. 9: pp. 173-174]

These are the Legendre polynomials that were previously defined using the
Gram-Schmidt process. Thus the f(x) of (15) are in fact P,(x) and (15) may be written

(29) (1=2xr+ )" = ZP,,(x)t",

n=0

establishing the equivalence of the generating function definition with the Gram-Schmidt
definition.

Legendre and Laplace concluded that the P,(x) in (29) were polynomials of de-
gree n in the variable x by examining a series expansion of the function

& —oram,,

m! (n—2m)!

(l—2xr+r2)"”2 = Z r"

n=0 m=0

(2x)*2m,

They reasoned the orthogonality directly. From (29) we write

o0

(l-—2xr+r2)'” 2= Z P(x) r
{=0
and
(l—2xs-f-s2)"”2 = Z P(x) s.
j=0

Multiplying these power series together via the Cauchy product formula yields
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- k n -k
\/{ 2xr4r? \/ 1—2xs+s ”Z:o;&(x) b} s
-é[ > P p,(x)]r’ J.

t+j=n

Integrating from -1 to 1 with respect to x gives

f-l A —2r+r? \/ — 2xs + nZou-jZ-n[ -1P'(x)Pj(x)dx] s

Through tedious calculation, the left-hand side of this expression becomes

L. 1 14 Jrs
7 " s

a function of the product rs. From this we conclude that the coefficients of the terms

in the series on the right-hand side are zero when i andj differ, i.e.,

1
P(x) P(x)dx =0, i#]
-1

and the orthogonality is established. Finally,

(1=2xr4r%)™12 |,°_l =

.or P(1)=1 and so the P(x) are in fact Legendre polynomials. [Ref. 8]
In a similar fashion, the norm of the Legendre polynomials can also be obtained
from the generating function. Let

Cp = /l;l =J.1 [ P,,(x) ]2 dx.

-1

Square both sides of (29) and integrate with respect tox on [ —1,1]:
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i i < J‘-: P(x) Py(x) dx) (" - J‘_ll — 2}“ e dx.

m=) n=Q

By orthogonality, the left-hand side is zero unless m = n, while the right-hand side is
integrable in closed form:

2 1

cht2"= -’%;l- ln(l—2xr+t2)|
nw=0

L (1t
= ln( l-t)'

This function can be expressed as a diflerence of two logarithms, each of which has a

-1

convergent Maclaurin series expansion in ( —1,1). When combined this yields

ic"'2n=i( 2'23-1 )th.

ne=0 n=0

Comparing coefficients of #* on both sides gives ¢, = -z—n—i_—i-

Since there is no systematic theory for determining generating functions, finding
one for a polynomial class can be a problem. The work above bears this out. Unfor-
tunately, the proofs above do not easily generalize to related classes. With this in mind,
let us summarize the key steps in proving that (15) is a gencrating function for the
Legendre polynomials. First we established that f,(1) =1 for n = 0. Next, we showed
that

(1=2xr+ 1412 = Zf,,(x) "

nw=0

for fi(x) a polynomial of degree # in the variable x. Finally, we showed that these
polynomials were orthogonal on the interval { —1,1]

[ 5 e dx =0, mot .
-1

These three points are sufficient to show that the gencrated class is the Legendre class
of orthogonal polynomials.
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We now provide an alternate proof attributed to Hermite. Our interest in this
proof is mainly the technique which suggests a method of generalization that we will
take advantage of in the next chapter.

We begin with (15) reproduced below

(1=2xt+ %)= Zﬁ.(x) ",
nw=0

Multiply both sides of this equation by x* and integrate from -1 to 1 to obtain

(30) fl \/_"_2;’%_ Z "f () .

Now change variables from x to y via
(1=2xt+ )P =l —ygy
giving

t(1-5°)

X=—— +y, dx = (1 = ty)dy.

The left-hand side of (30) becomes -

il [3 :y )+s]

» (1-w)dy

or simply

1
jl[-;— t(1 —-yz) +y [%dy.

Expanding the integrand of this last expression via the Binomial Theorem, we obtain

k
2/
k J‘1 J (l—y) k—j
t) — dy.
Z(J) -1 2/ i
j=0
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When written as

Z( Tlf- (f) J: (1= y* dy) o

we can identify the form as a polynomial of degree k in the variable . Comparing this
form to the right-hand side of (30), we conclude that

1
jl xkj;,(x)dx=0, forn> k,
-1

i. e., f(x) is orthogonal to all polynomials of lower degree. The same argument as before
gives f(1) = 1 for n > 0 and the proof is complete.

F. HYPERGEOMETRIC SERIES

The term “hypergeometric” was used in 1655 to distinguish a series that was "be-
yond” the ordinary geometric series 1 + x + x? + ---. In 1812, Gauss presented the power
series

ab x , ala+)bb+1) x* = ala+1)a+2)bb+1)(b+2)
c 1! c+l) 2T e+ 1)(c+2)

1+ _f'_.,.

b Y
c#0,~1,-2,... which is known as Gauss’ series or the ordinary hypergeometric series
[Ref. 10].

Convergence of this series for |x| <1 follows directly from the Ratio test. By
Raabe’s test, convergence can be shown for |x| =1 when (¢ — a — b) > 0 [Ref. 11: p. 5].
Gauss also introduced the notation ,F[ab;c;x] for this series. Note that
iFila,b; ¢ ; x] may be considered as much a function of four variables as a series in x.
[Ref. 12: p. 1]

With the shifted factorial, the ordinary hypergeometric scries can be expressed

JFilabicix]= Z(a)n(b)n X"

(c)n !
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Below are some examples of important functions which can be expressed as ordinary
hypergeometric series.

Example 1: log(l + x) = x,F[1,1;2; =x]

Example 2: sin-!(x) = x,F,[1/2, 1/2; 3/2; x3]

Example 3: tan-Y(x) = x ,F,[1/2, 1;3/2; —x%]

The generalized hypergeometric series is formed by extending the number of pa-
rameters, an idea attributed to Clausen [Ref. 11: p. 40},

Flay,ag, . a0y, by, ... by x] = z (b(.a):‘)(b(:;n)n(b(’a'::ﬂ "
n=Q

Note that since (q),.;/(a), = n + a, 2 hypergeometric scries i ¢, x" is characterized by the
fact that the ratio ¢,,,/c, of coefficients is a quotient of tw;;:olynonﬁals in the index n,
i.e., a rational function of n.

The Ratio test can be used to show convergence for all values of x when r < s and
for |x| <1 when r=s+ 1. When > s+ 1, the series diverges for all x %0 and the
function is defined only if the series terminates. The series terminates when one or more
of the numerator parameters q, is zero or a negative integer [Ref. 11: p. 45). This is an
important characteristic of the hypergeometric series that will be used later. A power
series that terminates gives a polynomial which is defined for all x. In this case, the pa-
rameters b, ... , b, may be negative integers as long as the series terminates before a zero
is introduced into a denominator term.

Examples of the generalized hypergeometric series include familiar functions such
as.

Example 4: (1 + x)* = \F[ —a; — ; —x]

Example 5: e* = F[ ~ ; — ; x]

Example 6: sin x = x F,[ - ;3/2; —x¥/4]

Example 7: cos x = F,[ — ; 1/2; — x3/4]

Example 8: The Bessel function of order a

/2R = sa+1; —x’/4]

Jolx) = T@+1)

where dashes indicate the absence of parameters, i.e., when r =0 or s = 0. We will also
usc a common alternate notation
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Ay s & .
'F’[b,. .b,"']

for either the ordinary or generalized hypergeometric series. [Ref. 12: p. 4]
1. Chu-Vandermonde Sum
The Chu-Vandermonde sum

(c—a),

(©)n

Fil-ma;c;1)m

is one of many useful summation formulas. Since this one will be used in a later chapter,
the proof is provided below.
Basically, this is a consequence of the General Binomial theorem

©0

—a (@
(1-x) -z—(mx.

k=0

Starting with the identity (1 — x)~(1 — x)~* = (1 — x)~, expand both sides. Us-
ing the Cauchy product on the left side and the General Binomial theorem on the right,
we have

i c nxn -i (a(';'):’)n <",

nwul n=0

where ¢, = i (@)i(b)a-s

. Equating coeflicients of x*, we have
i (D(Dacs

3 Dy _ (a4
& MeDpy My

In order to express the left side as an ordinary hypergeometric series, ,F,, mul-
tiply both sides by (1), and use the identity (1),/(1),-, = ( =1)*( —=n), to obtain

S (=n)a)

-— k - .
& ( l)k ( l) (b)n—k (a + b)n

(31)
Next,
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(=1 Ohar = (=1 (=1 (O)ps -
- (=1 ="k ONo+1)...(b+n—k=1)

—b - 1
RSN 121
n (=b=n+1),
=(-1) (=b=n+1)’

Using the above result, equation (31) becomes

Z (= 1,
M (—b-n+ 1y

Let ¢m —b - n + 1, and substitute to get

3F1[—"'a;c”]-(—l)"(—c+‘:c)-"+l)"
= <) (=c+a-n+1)..(~c+a)
(€)n
(c—a+n=1)..(c—a)
(©)n
(¢ = a)y

(n
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1V. JACOBI POLYNOMIALS AND SPECIAL CASES

This chapter focuses on the orthogonal class known as Jacobi polynomials, P&*(x).
Until recently, the classes of orthogonal polynomials considered “classical” were usually
given to be Jacobi, Gegenbauer (also called ultraspherical), Chebyshev (of first and sec-
ond kind), Legendre (also called spherical), Laguerre, and Hermite. The Jacobi
polynomials hold a key position in this list since the remaining classes can be viewed as
special or limiting cases of this class. Today, the classical orthogonal polynomials are
taken to be special or limiting cases of cither of two very general orthogonal classes
known as the Askey-Wilson polynomials and the ¢-Racah polynomials, between which
we will establish a formal equivalence. Because of their complexity, these classes are
described in Chapter VI after the necessary additional theory has been developed.

The results derived in the text that follows are arranged in tabular form by class at
the end of this chapter.

A. JACOBI POLYNOMIALS
1. Definition / Orthogonality
The J~cobi polynomials P*”(x) are generated by applying the orthogonalization
step of the Gram-Schmidt process to the standard basis {1, x,x3, ...} of P{ —1,1], with
respect to the weight function given by a continuous beta distribution on [ —1,1]

wix; a, B)=(1=x)(1+xf

fora>-1,8>-1,1ie.,

1 .
[ P20 P (1= 27 (1 + 2 = [ PT 5
-1
The Jacobi polynomials can also be represented by hypergeometric series
(x+1), [—n,n+a+ﬁ+l.|_x:|

(. )
) PRO@ === R T iy

This set of polynomials is thus standardized (as was done for the Legendre class in
Chapter 11, Section B) :
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Pf“"”(l) - (": a) -_(2_':.:!.‘_)'1. .
We shall demonstrate that these two characterizations of the Jacobi polynomials are
indeed equivalent.

To show that the polynomials defined in (1) are in fact orthogonal with respect
to w(x;a, B)=(1-x)'(l+x) on [ -1,1], it suffices to show that P"”(x) is orthogonal
to one polynomial of degree m for m=0, 1,2, ..,n~— 1. This is because any P*"(x),
0<m< n— 1, can be expressed as a linear combination of such polynomials. While any
polynomial of degree m could be used, we choose (1 + x)" for reasons that will become

apparent.
To establish orthogonality, we consider

< POP) (142" > = j ' PEA) (14 0™ (1= 2 (1 + 2 d.
-1

By (1), the right-hand side becomes

(x+ 1), z[(—n)l,,(n+a+ﬁ+i)£‘ U ]
= T L(n ™ (14 0™ d |

Using the last result of Chapter 11, Section C.1, the change of variable x = 1 — 2¢ yields

(a + 1), Z[(('")L("-Fa'i-ﬂ'*'l)k)2.t+m+c+p+1 X 1 l]
n! (o + 1), k! 2 Betatlm+f+)

k=)

_(a+1),.Z"J[((-nﬂnwwu),,)zmmﬁ, C(k+a+ D)T(m+p+1) ]

n! prd k! @+ ), Ck+m+at+fi+2)

Identities for the gamma function allow us to simplify this expression to the form
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PN n+ Ym+ A+ 1) y (=x(n+a+B+1)

Fm+a+pf+2) (m+a+pf+2pk
kw0

which can then be written

P et n+ ) Dm+ B+ 1) -n.n+a+ﬂ+l.l
Tm+a+p+2) YN mra+rp+2 '

The Chu-Vandermonde sum from Chapter 11 allows us to write this as

2 E G+ D+ B+1) (m+1=n),

Tm+a+p+2) (mtat+f+2,
Thus,
Cyy m=n
< PP, (140" > '{3. m=0,1,2,..,n=1
where

.= A 2P Pa e+ D+ B+ 1)
" Fn+a+p+2)

which justifies the orthogonality. It is possible to extract the value of [A™"]™ by modi-
fying this argument, but we defer this computation till the next section, where it will be
easier.
2. Ordinary Differential Equation / Rodrigues’ Formula / Norm
We begin deriving the ordinary differential equation for the Jacobi polynomials
by noting the general formal result:

d_ yoor @y a+l,.,a+l
2 oIy ;
@ dx [b,,... b, ”] = 'F’[b,+l b+ 1’ ]

This can be scen from the definition of the gencralized hypergeometric serics by

writing
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-L all (alj_ (a')k xk
dx ,"F‘[bl.... ] Z (O s (b K
-Z (“n_)g...(a')L £*!

&t (b (b (k=1)!

_i (@)rget o+ (@)p4) ik_
&1 Borsr o Bt AT

Noting that (a),., = a (a + 1),, we have

d Qe 0 @y a..a (@ + Dy @+ X
—,r,[ . "] By Z(b,“),‘ b+ 1), K

from which (2) follows. Differentiation of the hypergeometric series is justified by re-
calling that the power series is convergent for | x| <1 whenr=s+ 1.
We apply this result to the Jacobi polynomials to obtain

d o, (a + 1), -mata+f+l j—x
'd;“ P( p)(x) ( n 2".‘[ a+1 * T2 ])
-1\ @+1), -n(a+a+f+1) F -n+lnta+B+2 j_
-( ) a+1 ol a+2 2
m+a+f+@+2,, (r=1) (@+1, A+1)
2(n-=1) (@ +2),, Pﬂ (x)

which simplifies to

® L pleiry - LXELILD pleti. paiy

With these results cstablished, we now consider the orthogonality property of
the class: set

(4) Gl f PPy PP (1 = 21 + xfdx = [ P]™ 5,

By (3), we can write




1
iy Jp— f PP (1 -x)'(l+x)’[7‘i— P&l “"(x)] dx.

Integration by parts yields

6 &=

l -
m+a+tf ,L ['dd? (P,(,"m(x)(l -x)'(1 +x)’)]p::|l- V)

noting that the boundary terms vanish, so that

(6) ’u(:,'f) ‘;‘_'__-;2_’_—'3 jll PEC A=)y G @) (1 =) (1 4+ )P dx
where

M G =(1=5) <= PO ~ a1+ PEOx) + B(1 = 2) P O)

is a polynomial of degree (n + 1). Thus by (6) we may express ¢,.,(x) as a linear combi-
nation of Jacobi polynomials

a+l

Gasa(6) = D ¢ P A1),

J=0

We would now like to show that ¢; = ¢, = - = ¢, = 0, so that only the last term
of the summation survives. The constants ¢,, j=0,1,2,..,n can be determined by
substituting this expression for g¢,,,(x) into (6) and using (4).

10w [\ P PE O (1= 0 (1 + 2 de
-]

n+l

pl=l B=1) 3 pla=t. p=1) | -1
m+a+B CIJ. pal 8 (x) P* () (1 = 2™ (1 + x)P" d.

For each m < n — 1, by (4) the lcft-hand side /,, = 0, but the right-hand side is
zero unless j=m + 1 < n. Thus
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(l—l A=-1)1=1

O=cpy [ , 1€,
¢g=0,j<n
which means from (6)
®) ey JNY vy ey
and
9) Gara(%) = cpyy PR P~ ),

To determine the remaining constant c,,,, we note that by (7) and (9)

(1-x%) -d‘i- P& Px) = (14x) P& PAx) + B (1-x) P8P x) m ¢y PO A7 10().

Letting x = 1, then from the hypergeometric series definition of the Jacobi polynomials

we have P*#(]) = -(J‘E-:Tl)—" which gives

(a+1), (),
=2 a o g ;)l'
and so
(10) Cpyr ™= —2(n+1).

Combinjng (5), (6)’ (9)’ and (10). we have
) T;!_;‘ [ P& Px) (1=2)" (142 ] = =2 (1) [ BT #7000 (12" (142 ].

To obtain the second order ordinary differential equation, change n— n—1, a = a+l,
and 8 — f+1 in (11) to give A

L [P P00 (=)™ (142! ] = =2 PP x) (10" (1)

Then by (3),




4| 2T = P 0 P = —2m PP s 1,

i. e, y = P*P(x) satisfies

-% [(l—x)’“ (1+x)PH % ]= —n (n+a+f+1) (1-x)* (1+x)F y.

Using the product rule to expand the left-hand side, we have
(1=2)" (1+) [=(a+1) (1+2)y' + (B+1) (1=0) ' + (1-27) " |
= —n(n+a+f+1) (1=x)* (1+x)% y

which, when simplified, becomes the second order ordinary differential equation for the
Jacobi polynomials y = P*"(x) :

(12) (1=x3) y" + [ (B=0) = (a+B+2) x ]y’ + n (n+a+p+1)y = 0.
The reader is invited to compare this result with the second order ordinary differential

equation for the Chebyshev polynomials {7,(x)} given by Equation (5) in Chapter I.
By iterating (11) k¥ times, we obtain

_dd_kk- [ Pr(ta' ﬁ)(x) (l—x)a (l+x)p ] = (— ])k 21‘ (’H‘l)k [ Prsi-l.ck‘ ﬂ—k)(x) (l__x)a—k (l+x)ﬂ'k ]'
X

Setting « — a+4, and f — f+k gives

e a, (—l)k dk a a+k, p+
(1= (e PP = = [ (Bt P00 |

or equivalently in terms of the weight function,

k k
i, f) PO x) = —mml . 4
wix;a, f) Ppyy (x) 2% (n+1),  dxt

[ wlx ; atk, f+k) PEFE P9 ],

the general Rodrigues’ formula for the Jacobi polynomials. Letting » =0 and noting
P& P(x) =1 gives

x , (—l)k dk 1
(1=x)* (1+x)" P l”(x)=-;k—k!- =% [ (1=x)* (14074 ],
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or

. (=D*
wix; a, ) P} ﬁ)(x)=—27;!- o [ wix; ek, B+K) ],

the classical Rodrigues’ formula for the Jacobi polynomials.
Finally, we can use these ideas to obtain the value of (4], By direct com-
putation,

[R&P] = ' (1—-x)* (14x) dx
-1

_ 2P Ma+1) T(8+1)
[(o+f+2)

We will use this below. Combining (8), (10), and (4) when m = n yields

a -1 n+1) =1, B=D]-
[He T = iy T

Making the changes n =+ n—1, a = a+l, and § — f+1, this may be rewritten as

[h(a.ﬁ)]-l ”+°‘:‘ﬁ+l [h(a+l ﬂ+l)]

Iterating this relation » times produces

[h’(‘ﬂ-ﬁ)]-l = (n+a+p+1), [hé“"'"'ﬂ"'")]-'

4" n!
__TQ@nta+prl) 2 M(ngat1) D(n+f+1)
2" n! M(n+a+p+1) F(2n+a+p+2)

_ 2P Clntat1) T(n+f+1)
T Qn+at+f+1) n! T(n+atf+1)

3. Generating Function
As was mentioned in Chapter II1, finding a generating function for a class of
orthogonal polynomials can be a challenging task. Fortunately, a generating function
for the Jacobi polynomials can be found by mimicking a technique attributed to [1ermite
in his work with the Legendre polynomials. (See Chapter 111, Section E.3.)
We scek a gencrating function
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o0

(13) | F(rox)= ) e P&P() "
nw=)

for constants ¢,, n=0, 1,2, ..., with

1
PEPRD x* (1 =xP (1 +xf dx=0, k<n.
-]

To begin, we multiply (13) by x* (1 — x)* (1 + x) and integrate from -1 to I to obtain

k
(13) 1 Frx) (=21 +xf dx=Zc,,|:J‘l PEP ) x* (1 =2 (1 +x)f dx:l r.
-1 -1

n=(

Note that the summation of the right-hand side is from 0 to & because the orthogonality
property makes each term zero for n > k. We observe that the unknowns to be deter-
mined in (14) are F(r,x) and ¢,, When one is given, the other can be found, so we first
consider the left-hand side of (14)

j' x* F(rx) (1 = )% (1 + %) dx.
-l

Setting /1—2xr+r* = 1—ry and substituting for x = y + ( 2y ) r yields

[ 2 ) i S o 2 P

Factoring out the terms (1—y)* and (1+y), we have

1-y? 1y
[ [y+-(——;’l]"(l-y)“(x+y)" F(mﬁ#)

(19 1 | s
xl:l—(—gy-)-f-] [H——(—_é—yli] (1=ry) dy.

We would now like to make a judicious choice of F in order to facilitate calcu-
lations. Following the lead of the Legendre polynomials (Chapter I11, Section E.3)
suppose F is such that
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1—? . -
19 F(ror L) - R 1 L2 P e,

then the integral in (15) becomes

1—y?
J 11 [y““ -(——ﬁ-)—'- ]k (=" (1 .

We note that the integrand is a polynomial of degree & in the variable r as is
the right-hand side of (14). From (16), we get

F(r'”&%})—r) =(1-n)”' [1-“_"“23’)_’.]‘“ [1+-(-]:2~Y-)i]“"

which becomes, via 1-2xr+r?=(1-ry)?, the generating function for the Jacobi
polynomials:

F(rx)=2"* (l—2.:rr+r2)'l/2 [l—r+(l—2xr+r2)1/2]-°' [l+r+(l—2xr+r2)”2]'p.
Using this generating function in (13) gives
D e PEPx) " = 2 (1=2rbr?) VR [t (1=2r 7)) ] [1r (1=20r477) TP

n=0

from which we can determine ¢, by setting x = | and recalling that P® (1) =
Thus,

(a+1),
n

ey L r 2 (1 (27 (1) ]2 = (1)

nm=Q

which by the Binomial Theorem becomes

and so ¢, = 1 for all n. [Ref. 8]

50




B. SPECIAL AND LIMITING CASES
With the structure of the Jacobi polynomials established, we turn now to the role
of the parameters « and f.
1. Special Cases
For certain choices of the parameters « and #, we find that the classes previously
examined and several new classes are produced as special cases of the Jacobi class.
 These subclasses inherit the structure of the parent class which often provides a direct
way to establish specific properties (i.e., polynomial nature, orthogonality, etc.)
Table 1 provides the choice of parameters for selected classes.

Table . PARAMETERS FOR SELECTED CLASSES

Class Parameters
Jacobi a>-1, f>-1
Gegenbauer . a=Lf=2A1-1/2
Chebyshev, - =
First Kind a=f=—1/2
Chebyshev, —f=
Second Kind a=f=1/2
Legendre a=p=0

2. Limiting Cases .

In this saction, we briefly examine the Laguerre polynomials and the Hermite
polynomials. Using the hypergeometric series definition of the Jacobi polynomials, we
show how the Laguerre class is a limiting case of the Jacobi class.

a. Laguerre Polynomials
The Laguerre polynomials, L*'(x), are defined in terms of hypergeometric
series

0=() [ 7]

The first relationship to cstablish is
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To show this, we begin with the hypergeometric series representation for the Jacobi
polynomials

n+a —n, n+a+p+1  1—y
P,‘.“"”(y)==( . )za[ ot —2—]

Wheny = 1- A, we have

B
(@, B) _-2—x- - n+a) -n, n‘+a+ﬁ+l L X
b (l B ) ( n ’F'[ atl "B |

Writing out the power series, we obtain

pe m( (- _23; )_(n:a)z) (=me (n+a+B+1)e Xt

(a+ l)k k! l}k
_ [ nta - (=n)p x* (n+a+p+1),
- ( n ) l; (a+1), &! ﬁk '

In the limit as § — oo, the ratio

(nta+p+1), o

5*
and so
2 nta\ @  (~n)
im PP =< )= S —_—k_ k@
jm Py (' B ) ( " )r‘.o i X~

completing the proof. [Ref. 13: p. 103]
To obtain the orthogonality relation for the Laguerre polynomials, we start
with the orthogonality relation for the Jacobi polynomials

t
P D) P ) (1= (14) dy =0, m#n.
-1
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Letting y = 1— % gives

Lﬁpg.ﬂ(l—%-)p;a.m(l__z.;_)(%'_)a[z(l_%)]ﬂ%dx_o, .

Passing the constants outside of the integral and dividing through by them leaves us with

Lﬁ P& ﬁ)(l—-zﬂi) P p)(p%'.)xa (1-%—)”:&-—-0, mek .

Taking the limit as § — oo, We obtain the orthogonality relation for the Laguerre

&

polynomials

® @y 7@ -
(18) I LY(x) L(x)x* e *dx=0, m#n.
0

b. Hermite Polynomials
The Hermite polynomials, H(x), are defined

—nj2, (=n+1)2
(19) Hn(x)=(2x)"2Fo|: /2, bl ;—Lz]'

- X

In a fashion similar to that for the Laguerre polynomials, the Hermite polynomials are
a limiting case of the Jacobi polynomials via the Gegenbaucr polynomials. Specifically,

H,(x) = n lim A7 (a7
which allows a derivation of the orthogonality relation
(20) _f T H ) Hx) e  dx=0, m#n

from that of the Jacobi class. [Ref. 13: p. 107]

C. DISCRETE EXTENSIONS
We turn now to orthogonal polynomial classes which use the discrete inner product
introduced in Chapter 11, Section A.2
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N
<f, 8> =) fx) glx) Wix).
xmQ

Here instead of a continuum the support of the weight function is concentrated of a fi-
nite set of discrete mass points {0, 1,..., N}. The polynomial classes of particular in-
terest are the Hahn, dual Hahn, and the Racah polynomials.
1. Hahn Polynomials
The Hahn polynomials - actually discovered by Chebyshev - were independently
realized by physicists working in angular momentum theory via 3-j, or Clebsch-Gordon
coefficients [Ref. 8). We define this class by the generalized hypargeometric series

@ 0x:a, B N)=3Fz[_n’ —x, n+a+f+1 ]

a+l, ~N ’

fora>~1, B> -1, where N is a positive integer and n=0, 1, ..., N. From the power
series

_ (=n)g (=x) (n+a+f+1),
Qn(xsa9 ﬁ, N)’];) (a+l)k(—lv)kk!

(0,

we note that the variable x does not appear where we have come to expect. Since

(=x)p = (—=x) (—=x+1) ... (=x+k=1)
= (—D¥ (%) (x=1) ... (x~k+1),

we conclude that @,(x; «, 8, N) is a polynomial of degree n in the variable x. Because
0 < n< N, this set of N+1 orthogonal polynomials is finite for fixed « and #. [Ref. 14:
p. 33]

The Hahn polynomials satisfy the discrete orthogonality relation

N
@2) > Qulxia, B N)Qulxia B N)wlxia, B N)=0, men

x=0

where the weight function is given by a Aypergeometric distribution
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wixsa, B, N)= (x—i-a) (N-x+ﬂ)

X N=x
(23) (a+1)y  (B+D)y_x
My (Myex

We note that the weight function may also be written

B+l (a+1) (=N),
My (0, ~N=p)

(24) wix;a, f, N)=

We introduce the first forward difference operator acting on x
A fo(x) = fulx+1) = fu(x)

as a discrete analogue to differentiation. Since

> ML) =fx+1) = £0),
=0 .

(a discrete analogue of the Fundamental Theorem of Integral Calculus) the first forward
difference operator is a discrete inverse of the summation operator. This difference op-
erator is used in the Rodrigues’ formula for the Hahn polynomials, which can also be
written in terms of the weight function w(x;a, §, N) with shifted parameters as was
done for the Jacobi polynomials.

Two limiting cases of the Hahn polynomials are of particular interest. In the
first case, replace x by Nx in the interval of orthogonality. This in effect places the
support of the wcight function on the ( V+1) equally-spaced points { 0, 1/N, 2/N, ..., 1}
in [0,1]. As N = oo, the sct of discrete mass points tends towards the full interval
0,1]; we expect that this structure is reflected in the discrete orthogonality relation (22)
becoming an integral orthogonality with respect to a continuous weight function on that
interval. Rewriting the weight function in (23) as

Flx+14+a) T(N=x+1+8)

wix;a, B, N)= C(x+1) C(N—=x+1)

and using a consequence of Stirling’s Formula [Ref. 15: p. 257]
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. —q I(t+a)
Jme™ =y =1

we see that

T(a+1) F(+1) lim N~F w(Nx:a, B, N)=x*(1-x),

which we recognize as the continuous beta distribution for the Jacobi polynomials nor-
malized on [0,1].

This is indeed the case, and can be easily verified by a direct computation on the
hypergeometric series definitions (21) of Q,(x; a, 8, N) and (1) of P*#(x) given in Sec-
tion A.l, i.e.,

Jim 0 Nxi 0, B, N) =i P P1-22),

Thus the Hahn polynomials may be viewed as a discrete analogue and generalization of
the Jacobi polynomials. [Ref. 14: p. 36] '

The second li}niting case gives rise to an interesting class of polynomials which
has applications in coding theory [Ref. 16].

a. Krawtchouk Polynomials

ForO<p<l, leta=pr, f=(1-p)tin (21), then take the limit as ¢ tends

to infinity to obtain the Krawtchouk polynormials, i.e.,

lim@(x;pt, (1-p)t, N) =

(25) F, [_"_Nf g ] = Kyx;p N)

[Ref. 14: p. 38]. A similar limiting argument applied to the weight function shows that
the Krawtchouk polynomials are orthogonal with respect to a binomial distribution:

N
(26) ;Km(x;p. N)K,(x;p, N)(‘r)p‘(l-p)”"-o. m # n.

This class of polynomials possesses an inherent symmetry, the structure of
which can be generalized to form other orthogonal polynomial classes. To this end, we
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turn now to the characteristic of duality. For suitably defined functions u(x) and v(x), two
classes of orthogonal polynomials { p,(i(x)) }, and { ¢,(v(x)) } are said to be dual if

Px(u(n)) = gx(v(x)).

That is, interchanging the roles of the degree » and the discrete variable x in one class
produces the other. The Krawtchouk polynomials provide an example of an orthogonal
class that is self~dual, i.e.,

Kyx;p, N)=K(n;p, N).

This is clear from the hypargeometric series definition (25) given above. It therefore may
seem reasonable to suspect that there exists a class of orthogonal polynomials dual to
the Hahn polynomials. Such a class does in fact exist, and it is this dual class which we
next examine. [Ref‘.‘ 17: p. 657]
2. Dual Hahn Polynomials
The dual Hahn polynomials, R( A(x);y,d, N ), are defined

(27) R(A(x);7,8, N)=, Fz[-"’ —x, x+y+d+] ]

y+1, =N ’

where  A(x) = x(x+y+d+1), and n=0,1,..,N. These polynomials satisfy the
orthogonality relation

N
@) ) Ra(M@iv, 8 N)R(A)i%.8, N)wlx:v,8, N)=0, mkn

Xx=0

where

(y40+1), (1+0+3)12), (y+1), (=N ) (=1)*
(D (+5+1)/2), 5+ 1), (y+6+N+2),
= (=1)f 40+ D O+, (=N);  2x4y+6+1
(Dy (0+1) ( N+y+35+2), y+o+1

wix;y,d, N)=

(29)

Note that R,(A(x);»,0, N)is a polynomial of degree n in the “variable” A(x). The rca-

son can be scen directly from the hypergcometric series

57




”

R 438, N)= )

k)

(=n)y (=x)y (xy+6+1)y
(Y"'l)k (—N )* k! )

By writing the terms (~x), (x+y+d+1), in product form, we obtain

=1 =1
n (—x+) n (x+y+d+j+1)
Jwd J=d
which becomes
k=1
I—[ (=x+j) (x+y+6+1+))
)

Multiplying these factors as binomials, we have

R=1

[T Ceryrstn) 4= +jGerrren) +7]
J=0

which simplifies to

k=1
H [ —x (x+y+5+1) +/ (y+6+1) + ;2 ]

Taking only that part which depends on x yields
A(x) = x(x+y+5+1)

as given above. [Ref. 18: p. 48]

As discussed in the previous section, the discrete classes interact more naturally
with difference operators than with diferentiation. To accomodate the quadratic form
of A(x), we introduce the divided difference operator

Af(AX) L A+ D))=f(A(x)
pLl M)y === Ax+D—A(x)

The dual interplay betwech the dual Hahn and lahn polynomials follows easily
from their hypergeometric definitions:

58




~Xy =N, n"‘ﬂ""ﬁ"“ . .
at+l, =N "]‘Qn("% B, N).

R(A(n);ua, B, N)-afz[

This duality is also reflected in the recurrence relations and difference equations of the

two classes. By interchanging the roles of # with x, a with y, and £ with §, the recur-

rence relation for one class leads to or can be extracted from the difference equation for
the other class. [Ref. 14: p. 37)

3. Racah Polynomials

Both the Hahn and dual Hahn polynomials can be unified as special cases of a

single larger class, the standard notation of which is similar to that of the dual Hahn

class. The Racah polynomials, R,( A(x);a, B,y,8), are defined by the hypergeometric

series

=n, n+at+f+1, —x, x+y++1 ]

(30) R,.(A(x);a, ﬁoY'a)-CFJ[ atl, f+6+1, y+1 '

where A(x) = x(x+y+d+1), n=0, 1, ..., N, and one of a+1, f+5+1, or y+1 equals =N.
(Physicists understand these objects via 6-j symbols.) '
The orthogonality relation for the Racah polynomials is

N
D)) ZRm(l(x);a. B, v, 8) Ry(A(x) i @, By, 8) wix; @, By, 0) =m0, mun
x=0

where

(y+6+1), (740+3)/2) c (x+1), ( B+6+1), (y+1),,
(l)x ((7+5+l)/2)x (v+6—a+ l)x (Y"‘ﬁ'*‘ l)x (’5+ l)x
(y+0+ 1), (@+ D) (B+6+1), (y+1),  2x+y+06+1
=), +o—at ), (7=B+1), (3+1),  y+o+l

w(x;a, B,v,0)=
(32)

[Ref. 19: p. 24]. Note that w(x; a, 8, y, 8) has a “well-poised” structurc. This means that

the pairwise sum of numecrator and denominator parameters is constant, i.c.,
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(y+6+1) + (1) = y+6+2

(.!:“.l’{."l).,.(.’l‘;l‘l.)_,.,.,;.'.z

(a+1) + (y+o—a+1) = y+i+2
(B+6+1) + (y=B+1) = y+6+2
(y+1) + (5+1) = y+542,

The same could be said for the weight function of the dual Hahn polynomials. (To say
that a hypergeometric series is well-poised means that for

Ay oy 4
MlF’[ bl' “y ;:l ;x]’
the parameters a and b satisfy the following relation

a+l = aytb = ma,, +b,.

Well-poisedness is an important property of certain summable hypergeometric series.)
From the hypergeometric serics definition (30) of the Racah polynomials, we
find that when the roles of x and n, « and y, and 8 and ¢ are all interchanged, the series
is unchanged. Thus, like the Krawtchouk polynomials, the Racah polynomials are self-
dual.
To recover the Hahn polynomials as a limiting case of the Racah polynomials,
let y+1 = <N and 6 = oo. Thus by formulas (30) and (21),

i n+a+p+1, —=x, x+y+é+1 = e [ n+a+p+1, X
st atl, p+é+1, =N TP avl, =N
and then by formulas (32) and (24), |

o Wy
}ggw(x'a' p- Vs 6)- (ﬂ‘f‘l)[v w(x,a, ﬂv N)'

Likewise, by letting a+1 = —V and § — oo, we obtain the dual Hahn polynomials.

Figures 5 and 6 together with Tables 2 and 3 provide a hierarchy of classes dis-
cussed in this chapter. Tables 4-15 summarize information about sclected classes in this
hierarchy [Refs. 14, 12, 20, 21, §, 13,9, 22}.




Racah

Hahn Oual_Hahn

\

Jacobi Krawtchouk Meixner

Laguerre Charlier

Hermite

Figure 5. Hierarchy of Limiting Cases
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Jacobi

Gegenbauer

4
Chebyshev Chebyshev Legendre
First Kind Second Kind

Figure 6. Hierarchy of Special Cases
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Table 2. TABLE OF CLASSES

Class Symbol Ilypergeometric Series
Racah | Ri(A0)is, B0, 8) | oR[ I A LTty
Dual Hahn | R,(4(x);7,d, N) 3Fz[-n' —yx.}.J: te ?\}ﬂ +1 l]
Habn | Qixia B, N) % ALY
Jacobi PEP (o :!l)n 2F1[—n, ”:1Tﬂ+l 1-2-x ]
Krawtchouk Kixip, N) BT N—x ; "}-]
Meixner My(x; B, ) 2F) [_n'ﬂ Y- %‘ ]
Laguerre L,(,“)(x) -ga—-:—!l-)—"— ,F,[ a-l-nl ;x]
Charlier Calx; ) 2F 0[_”'_ - 'bl:' ]
Hetmite H(x) (22" 2Fo[-n/Z, ( —n+ N, _ :l? ] |
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Table 3. TABLE OF CLASSES (CONTINUED)

%)

1

2

Gegenbauer Gy (%) %)'n‘ 2Fy [—';.,-: 1-';22/1 ; _l-gi]
Ghbvier | 1o [ T 45 ]
Cbysben | U A A ol
Legendre Py(x) 2F) [—n, ntl, l:_x"]




Table 4. RACAH POLYNOMIALS

Symbol: R,(4(x);, B,y,9)

Interval: For N a positive integer, x=0,1, ..., N.

Weight:
Wi o, By, 5) = (y+6+1), (y+0+3)/2), (a+ 1), ( B+5+1) (y+1),
P B O ) (0 1)/2), (+o—at 1), (y—B+ 1y (6+1)
Norm:
N
Z[Rn()-(x);a, B, 8 wix;a, B,7,9)
Xm0
_ oy S ntatftD), (B+1), (a—6+1), (atB—y+1),
(a+B+2)y, (at+1), ( f+I+1), (y+1),
where if
a+1l=-=N,
_ _+6+2)n (=B)y
(y=B+1) 5 (0+1)y’
or if
p+6+1=-N,
M= (y+9+2)y (6—a)y
T (yo—at )y (0+1)y
or if
v+l =-=N,
M (=0)y (a+B+2)

~ (a=6+D)y (B+1)y
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Table 5. RACAH POLYNOMIALS (CONTINUED)

Hypergeometric Series:

BA(H)3 0, B3,8) m | T IEEALL S xirbeL, 1]

where A(x) = x(x+y+6+1), n=0,1, ..., N,
and one of a+1, f+d+1, or y+1 equals —N.

Recurrence Relation:

Ax) Ry(A(x) s &, B, v, 0) = alm) [ Rpyi(A(x) 3 @, B, 7, O)~Ro( A(x) 5@, By, 8) ]
—c(n) [ Rn( 'l(x) s & ﬁ’ 14 é)—‘Rn—l( 'J'(x) ? & Bv Y, 6) ]

where
aln) = (n+a+p+1) (n+a+l) (n+ﬂ+6+l) (n+y+l)
N (2n+a+B+1) 2n+a+8+2)
) n (n+p) (n+a+p—y) (n+a—35)
N = T 2ntat 1) 2ntath)

Difference Equation:

M) R(4(n); @, B,y,6)= A.(x) [ Reri(A(n) s 0, B, 7, 5)=RA(n); @, B,y,6)]
-C(x) [ Rx( l(") » & ﬂi Vs 6)-R —l( ).(ﬂ) y & Bv Yy 6) ]

where
AGe) = (e+y+d+1) (x+y+1) (x+6+8+1) (x+a+1)
(2x+y+0+1) 2x+y+6+2)
Clx) = X (x+0) (x+y+0—a) (x+y—p)
(2x+y+0+1) 2x+y+6)
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Table 6. DUAL HAHN POLYNOMIALS

Symbol: R(Ai(x);y,d, N)
Interval: For N a positive integer, x =0, 1,..., N.

Weight:

(y+6+1), (14+6+3)/2), (y+1), (=N), (=1)"
(D ((r+0+1)]2), (64 1), (y+0+N+2)

wix;y,06, N)=

Norm:

i [R(2(x); 7,8, N)Pwix;y,6, N)= [ (n-:)’> N;,f_:é) ]—1

x=(

Hypergeometric Series:

R(Ax); 7,8, N)=, Fz[—n. ;’if,‘i’}é"’“ , 1]

where A(x) = x (x+y+5+1)

Recurrence Relation:

—A(x) Ry A(x) 37, 8, N) = B(n) [ Rpyy( Ax) 37,8, N)=R,(4(x); 7,6, N)]
_D(") [ Rn( }-(x) v 6v N)—Rn—]( ).(X) » Vs ‘sv N) ]

where

B(n) = ( N—n) (y+1+n)
D(n) = n( N+1+6-n)

Difference Equation:
—nR(A(x) 7,8, N)=b(x) [ Ry( Ax+1); 7,8, N)=R,(A(x):v,6, N)]
_d(x)[ Rn( }'(x) W 5' N)_Rn( J'('x"'l) M 60 N) ]

where
Bx) = (x+y+d+1) (x+y+1) (N=x)
(2x+y+0+1) 2x+y+6+2)
dx) = x (x40) (x+y+0+N+1)
(2x+y+95) (2x+y+o+1)
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Table 7. HAHN POLYNOMIALS

Symbol: Q.(x;a, B, N)
Interval: For N a positive integer, x=0, 1, ..., N.

Weight:

. _ [x+a) (N=x+B\ _ (B+Dy (a+1); (=N),
W(x,a, Bo N)-( X )( N-x ] (l)N (l)x(—N—ﬂ)x

Norm:

OO

Y [Qdxsa 8 N) P wlx;a, B N)

x=0

) whf1 (N+al-\l}ﬂ+l) (N+a+£+l+n)

= X
2n+a+p+1
n+a+f (1"{)

[(a+1) F(a+p+1) [(n+p+1) T(n+1)

r(g+1) C(n+a+1) F(n+a+p+1)

Hypergeometric Series: For a, f> ~1 and
n=0,1,..,N,

a+l,-N !

Qulx;a, B, N)=3F2[—n, nta+pf+1, —x 1]'
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Table 8. HAHN POLYNOMIALS (CONTINUED)

Recurrence Relation:

—x Qulx;a, By N)=b(n) [ Qpix; 0, B, N)=Qplx;e, B, N)]
—dn) [ Qulx;a, B, N)=Q, y(x;a, B, N)]
where
(n+a+p+1) (n+a+1) ( N-n)

(2n+a+p+1) (2n+a+5+2)
n (n+p) (n+a+p+N+1)

Qn+a+p) Qn+a+p+1)

b(n) =
d(n) =

Difference Equation:

—A(n) Qlx;a, B, N)=B(x)[ Qulx+1;a, B, N)=Qu(x;a, 8, N)]
—D(x)[ Qu(x;a, B, N) = Qplx—1;a, B, N)]

where

B(x) = ( N—x) (a+1+x)
D(x) =x( N+14p—x)
Aln) = n (n+a+p+1)

Rodrigues’ Formula:

(x:a) Nz—v-iiﬂ) <1,Y) Onlx;a, B, N)

- () e G () |
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Table 9. JACOBI POLYNOMIALS

Symbol: P* #(x)
Interval: [-1,1]
Weight: (1 —x)*(1+x)

Standardization: P (1) = (" M “) E—:'—,Q-

Norm:

J' | [P AT (1 — 2 (1 + x) dx = 27 D(ntact ) D)

, (2n+a+f+1) n! T(n+a+p+1)

Hypergeometric Series: Pi""(x) -E;:'l)z. WF [—n , ';-:_a;+ﬂ+l : l—z-x

Recurrence Relation: 2 (n+1) (n+a+p+1) (2n+a+8) P (x)
= 2n+a+p+1) [ (2n+a+p) (2n+a+f+2) x+a~p2 ] P& P x)

=2 (n+a) (n+B) 2n+a+8+2) P P (x)

Differential Equation:
(1‘*"2) y' +0 B —a—(a+B+2) x]y'+n(n+at+f+1) y=0, y= P'(‘a. p)(x)

Rodrigues’ Formula:
2"l POP(x) = (= 1) (1=x) " (1+2)7P f = [(1 =001 + )

Generating Function:

00

PEPlx) (" = 2 L=t/ 1= 2t + 2 )2 (1t J1 = 2xe + 22 )P
2, J

nm=0 (l—2xt+t2)

Explicit Expression: P4 P(x) = 2™ Z "+°') (""'ﬁ ) (x=1)y* (x+1)*

k=0
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‘Table 10. LAGUERRE POLYNOMIALS

Symbol: L"(x)
Interval: [0, oo)

Weight: x*e*, a>-1

Standardization: L(1) _k";%l. X+ ...

Norm:

0 H

Hypergeometric Series:
@y  (n+a -n
L""(x)a( n )1F‘ [a+l ,x]

Recurrence Relation:
(n+1) L® () =[ (2n+a+1)=x] L) - (n+a) L2, (x)

Differential Equation: xy” +(a+1=x)y'+ny=0, y=L"(x)

Rodrigues’ Formula:

@) = 1 d n+a —=x
Lll (x) n! x!! e—x dxn {x e ]

Generating Function:

ot

LOx) " = (1=1)™" exp( 2%~
';) " ( ~1 )
Explicit Expression:
o0
L =Y (1 (1) b <
k=0 '
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Table 11. HERMITE POLYNOMIALS

Symbol: H,(x)

Interval: (=00, c0)

Weight: e

Standardization: H,(1) = 2" x"+ ...

Norm:

J T [H@Pe™ dr=Jx 20!

Hypergeometric Series:
Hy(x) = (20)" zFo[-n/ ] ]

Recurrence Relation:
H,, (x) = 2x Hy(x) —2n H,_,(x)

Differential Equation:
V'=2xy'+2ny=0, y=Hyx)

Rodrigues’ Formula:

n —x’ dn -x’
How) = (-1 e L[]

Generating Function:

N Hy(x) =e2xr—t’
e n!
Explicit Expression:
(ni2] n=2k
=n! -1 .._(L
Hy(x) = nt ;( V" 2y
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Table 12. GEGENBAUER (ULTRASPHERICAL) POLYNOMIALS

Symbol: C'{x) (or P{x)), A>-1/2
Interval: [ ~1,1]
Weight: (1 — x3)-12

Standardization:

cx)
)

‘lln_x.r& = Ty(x), n=0,1,2,..
Norm:

27N r(n+d+1/2) P
(n4+2) n! T(n+24)

J-l [C'('A)(x)]2 (l _xz)a-l/z do =
-1

Hypergeometric Series:
2 (24) —n,n+21, 1-x
Cile) = oF, [ TRy A5

Recurrence Relation:
(n+ 1) CD (x) = 2 (n+2) x CO(x) = (n+24-1) C2,(x)

Differential Equation:
(1=x%) y =@+ 1) xy'+n (n+20) y = 0, y = CiY(x)

Rodrigues’ Formula: C{x) =1, C{x) = 2)x,
d

2" ! (4+1/2) (1= €)= (= 1) @A)y S5 [ (1=aT)+412]

dx"

Generating Function:

00

Z ) (" = (1=2xr+0%)

n=Q

[A]




Table 13. CHEBYSHEV POLYNOMIALS OF THE FIRST KIND

Symbol: T,(x)

Interval: [ -1,1]
Weight: (1 = x3)-112
Standardization: 7,(1) =1

Norm:
1
j (TP =) s = {F2 720
-1

Hypergeometric Series:

Ty(x) = Fy _ln/i"; _1__;_;_ ]

Recurrence Relation: 7,,,(x) = 2xT (x) = T,..(x)
Differential Equation: (1 =x)y" —xy' +nly=0, y=T/(x)

Rodrigues’ Formula:

- U e
" 2"*' [(n +1/2) dx"

Generating Function:
ZT,,(X)( =X _jcx<l, |t] <]

1-2xt+42
Explicit Expression:
T,(x) = cos(nf) with x=cosf, 0s0<n

R
L) =7 Z( D = 2k)' e
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Table 14. CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

Symbol: U,(x)

Interval: [-1,1]

Weight: (1 — x2)12
Standardization: U (l)=n+1

Norm:

1
L LUL)P (1 = %%)dx = %

Hypergeometric Series:

) = 1o 35705 5 |

Recurrence Relation: U,,,(x) =2xU,(x) — U,_,(x)
Differential Equation: (1 —x?)y" —=3xy' +n(n+2)y=0, y=Ufx)

Rodrigues” Forinula:

(=)' (n+ 1) Jr d" 2\n+1/2
Up(x) = . -
) (1=x))"2 2" T(n+3/2)  do” (1=

Generating Function:

OC

N U te—tee  Z1<x<1, |t1<1
,‘,/;‘.! § 1-2xt+0% '

Explicit Expression:
sin(n+1)0

Unlx) = sin

with x=c0s8, 0<0<n

[n/2] (n = k!
TR S B

k=0
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“Table 15. LEGENDRE (SPHERICAL) POLYNOMIAL

Symbol: P,(x) '
Interval: [ -1,1]

Weight: 1

Standardization: P,(1)=1

2
2n+1

Norm: [ ! [P(x)]dx =

Hypergeometric Series: P,(x) =,F, [ = ln+l : 1-2-x ]

Recurrence Relation: (n+1) P, ,(x) = (2n+1) x P(x) = n P,_\(x)
Differential Equation: (1 —x)y" —2xy' + n(n+1)y =0, y=P(x)

1Y
Rodrigues’ Formula: P,(x) =-(-i;n—3- 7‘:; [ (1=2)"]

Generating Function:

ZP,,(x) I"=(1—2.\‘t+12)-”2, —-l<x<l1, |t] <1

n=(

(/2 _
Explicit Expression: P(x) =5 . (~1)*(}) (2”,,2");«-2*

k=0
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V. APPLICATIONS

Orthogonal polynomials and special functions in general have been studied exten-
sively in mathematics and other fields since the eighteenth century. Presented below are
a few of the traditional applications of selected classes of orthogonal polynomials. Our
first few applications come from numerical analysis.

A. ECONOMIZATION OF POWER SERIES

Economization of power series is a technique used to reduce the degree of a
polynomial approximation to a given function.

The maximum norm (or L — norm) for a continuous function on a compact inter-
val [a,b] is defined as

I/ Moo = max, I ().

This norm is not induced by an inner product, but nevertheless has many uses in applied
mathematics, including numerical analysis.

The minimax property of the Chebyshev polynomials states that of all n* degree
monic polynomials (i.e., leading coefficient 1), 2!T,(x) has the smallest maximum norm
on [ —1,1] [Ref. 23: p. 106]. The justification for this statement is deferred until Section
C. Hence the best approximation in the maximum norm to the function x* on [ —-1,1]
by a function of lower degree is f(x) =x*— 2'-T,(x). So, given a function and a
polynomial approximation to that functxon (e.g., from a Taylor series expansion), suc-
cessively replace the highest powers x* with f(x) to obtain a polynomial approximation
of lower degree [Ref. 23: p. 125].

Example I: Let f(x) = sin x. The Maclaurin scries for this function is

2k+l

_1)
smx—z (2k+ i)

and this serics is convergent for x e R. If truncated after the x* term, the polynomial
approximation for the function is

3 5

T

sinxx x — 5

7




with a maximum error of 0.0002 for xe [ —1,1]. We use the fifth degree Chebyshev
polynomial T¢(x) = 16x% — 20x° + 5x to obtain

 _ 5x 5«

517 480 1920
with an error not exceeding

max | Ts(x) | __1
1920 ~ 1920

2 0.00052

in [ =1,1]. Thus the approximation

x3 <5x3 Sx) 1915 75 3

smxxx= - +{ 280 ~ 7920 )= 1920 *~ 480 ¥

has an error whose magnitude in [ —-1,1] does not exceed
0.00052 + 0.0002 = 0.00072.

Compare this with the maximum error of 0.00833 for the Maclaurin series which is
truncated after the x* term. For a cubic polynomial approximation of sin x, the “econ-
omized” polynomial has a maximum error that is significantly smaller (less than one
tenth) than that of the truncated Maclaurin series.

The next three applications illustrate the usefulness of the zeros of orthogonal
polynomials. The first two come from numerical analysis, the third from a problem in
electrostatics. We begin v_vith a preliminary discussion of a fundamental technique from

numerical analysis.

B. POLYNOMIAL INTERPOLATION

Polynomial interpolation is a method of approximating a given function with a
polynomial that matches (interpolates ) the function at specified points (called nodes or
abscissae) x,, ..., x, [Ref. 24: p. 497). Given a function f(x) and » distinct nodes in a
compact interval [a,b], there is a unique polynomial of dcgree (n— 1) that passes
through the points (x,, f(x)), 1 <ign.

Foreachi=1,2,...,n, deline a polynomial of degree (n — 1) by

78




7y %) = 1—[ ( ;:ii )

k-l

Clearly, for each k= 1,2,...,n, 7 (x,) =0 if k+# i and =,(x) =1, that is, = (x) =4,
(We may thus equivalently express #,,(x) = [(x)/((x~x)) I(x)), where I,(x) = f[ (x—x,) is
the unique monic polynomial of degree n that vanishes simply at eackﬁl node x,,
k=1,2,..,n)

The Lagrange interpolating polynomial is now given by

L) = )" £8) mi o).

=l

Clearly, L{(x,) =f(x,) for k=1, 2, ...,n, and uniqueness of the degree (n — 1) interpolat-
ing polynomial is guaranteed by the Fundamental Theorem of Algebra.

C. OPTIMAL NODES

In this section we address the issue of estimating the maximum size of the interpo-
lating error || f— L |... Assuming fis suitably differentiable in [a,6], it can be shown
[Ref. 25: p. 188] that there exists a value K, (which depends on f®in [a,6]) such that for
any x in [a,b],

K
|f@ -1 | <= 4@ |,

where /(x) = f[ (x — x). (Note again that [(x) is a monic polynomial of degree n which
vanishes at th'él nodes.) This implies that | f— L||.. is minimized by making the optimal
choice of nodes x,, ..., x, in [a,b] which minimizes ||/, ||.. Surprisingly perhaps, this hap-
pens precisely at the zeros of the Chebyshev polynomials T,(x), scaled to the interval
[a,b]. We sketch the reasons below.

For simplicity, we take our interval of interest to be [ —1,1] instead of [a,b] without
loss of generality. The transformation

(5 (4)

or equivalently,
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rm2( S22,

is a one-to-one continuous mapping between the intervals [ —1,1] and [a,b].

\Iow let x, be such that 7(x) =0, i=1, 2, ..., n (see Chapter I, Section A.3), i.e., lct
I(x) = 2,,_, T.(x). From the recurrence relation (Equation (4) in Chapter I), T,(x) has a
leading coefiicient of 2*! ; hence this /(x) is monic. Moreover, from the definition
T,(cos @) = cos nb, it follows that

1
(n b= (=1 ==
where y, =y, = co,s, in , i=0,1,...,n. Now suppose m,(x) is another monic polynomial

of degree n such that

1

(2 7y o <N s lloo = '27,:',‘ .

Combining (1) and (2) we see that we must have for i=0, 1, ... ,n,

my(y) <l (y) =;an‘- if i is even, and

) el PR
M ¥) > 1) =T if i is odd.

Thus, the polynomial p,(x) = m,(x) — [,(x) has degree at most (n — 1) (since it is a differ-
ence of two monic polynomials of degree n) with at least n zcros, one in each interval
(¥ 1Y) 0 i<n—1, by (3). This contradicts the Fundamental Theorexﬁ of Algebra,
and so no such polynomial m,(x) satisfying (2) exists.” Hence the choice of nodes x; de-

termined by /(x) = T,(x) minimizes || ||, —maxl [(x) | over all possible monic

1
2n 1
polynomials /(x), and therefore over all possible choxces of interpolating nodes x,.

It should be emphasized that this Chebyshev interpolation allows an a priori error
bound for all x, but is not always best possible for every x using other interpolation
schemes. (For example, if cqually spaced nodes x,, ... , x, are uscd, then trivially, the er-
ror f(x) — L{(x) =0, cven if x = x, is not a Chebyshev zero.) Chcbyshev zeros are opti-
mal when one has frecdom in the choice of nodes. For dctails regarding the practicality

of Chebyshev interpolation and some asymptotic results, sce [Ref. 24].
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D. GAUSSIAN QUADRATURE

Quadrature formulas are used in that area of numerical analysis concerned with the
approximate integration of a function f(x) against a weight function w(x) >0 on an in-
terval (a,b), when the explicit evaluation is intractable.

An interpolatory quadrature is such a rule that uses interpolating polynomials, such
as Lagrange polynomials:

b b
I S (x) wix) dx zj LL(x) wix) dx,

where L(x) =3 Sf(x) n(x), as described above. This can be rewritten as
fm]

Iy n
W [ rewaas rem,

jm]

where the weights w, are given by

b
(2 wy = j My 5(x) w(x) dx.

Thus, interpolatory quadrature is basically a weighted sum of the function values f(x,)
at the nodes x,, i=1,2,...,n, as are numerical integration recipes such as Simpson'’s
Rule and the Trapezoidal Rule.

For specified nodes x,, ... , x, € [a,b], the n weights w,, ..., w, computed in (2) for the
quadrature (1) will be exact for polynomials fe P, ,[a,b], but we can do better. [Ref.
25: p. 236]

In Gaussian quadrature, we ask for the location of the n nodes x,, ..., x, as well as
the n weights wy, ..., w, in order for the quadrature rule (1) to be exact for polynomials
fe P, [ab). At first glance, this seems to be an extremely complicated computational
problem, but the solution falls out simply when the theory of orthogonal polynomials
is applied.

Let { p,(x) }:2; be the class of polynomials orthogonal with respect to the weight
function w(x) on [a,b], say, by Gram-Schmidt, and Ict L/(x) be the Lagrange polynomial
that interpolates fe P,,_,[a,b] at the zeros of p,(x), so that f(x) — Li(x) e P,_,[a,b] van-
ishes at the zeros also. Since the zeros of p,(x) arc rcal, simple, and lic in (a,b), we have
the property that
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£) = L) = py(x) gpoy (%),

where g,., € P,_[a,b]. Hence, by orthogonality,

b ] ]
[ 7o wiey de = | 1wt de = [ pae) s c) wto) e =0

We have thus shown that the resulting n-point Gaussian quadrature rule is exact for
fe P, _\[ab]. Moreover, by a theorem of Sticltjes, if f(x) is continuous on a finite inter-
val [a,b], then

b b
,,li;gf ) wie) de = [ 70) wie) i

By applying the Christoffel-Darboux formula (Equation (9) of Chapter III with
notation from Chapter 111, Section B) and using (1), it is possible to derive an alternate
expression for the weights (2):

An+l
hp Py’ (X)) Pryr ()

Wx=-

which are referred to as the Christo;fel numbers. [Ref. 8 ]

Thus Gauss-Jacobi, Gauss-Chebyshev, and Gauss-Legendre are the names given to
Gaussian quadratures involving the weight functions and orthogonal polynomials from
the Jacobi, Chebyshev, and Legendre classcs, respectively.

E. ELECTROSTATICS

The zeros of the Jacobi polynomials play an interesting role in a problem of Sticltjes
concerning electrostatic equilibrium. In this problem, fix “masses” of positive charge a
and B at the points x = ! and x = —1, respectively. Then place n pcint masses of positive
unit charge in the interval ( —1,1) so that they are {ree to move. These interior masses
are now subject to a “logarithmic potential”, that is, a repelling force that is proportional
to the logarithm of the distance scparating them. The problem is to determine the dis-
tribution of the point masses x,, i=1,2,...,n, when the system is in equilibrium.
Mathematically, this is equivalent to maximizing the force function
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@) Fltne.z)ma), logll—x)+ B logl+x)+ ). log | x—x .

=] {m}] 1€i</sn

The logarithmic terms give the restrictions x, # ~1, x,# 1, and x, # x, for i #j. This
otherwise continuous function gives the equilibrium points by setting '

OF o in
4 3%, yi=1,2,..,n

and solving for x,, ..., x,. To solve this system of n nonlinear equations in n unknowns,
Stieltjes introduced the polynomial

pal) = [ =)
im]

and reduced (4) to

_l_ pnn(xl) ﬁ - o
2 pllx)  Mx lex

=0, i=12..,n

which becomes
(1=x)py" (%) + [ 28 — 22 — (2 + 26) ;] p'(x) = 0

fori=1,2,..,n
Since the polynomial

(1 - xz) P () + [28 = 2a — (20 + 2f) x ] p,’(x)

is of degree at most # and vanishes at x =x, i =1, 2,..., n, it can be set equal to a scalar
multiple Ap,(x) which also vanishes at these points. Ilence

(1=x%) p(x) + [ 28 — 2a — (2 + 28) x ] p'(x) = Apy(x) = 0.

Attempting a power series solution to this second-order diflcrential cquation leads to the
observation that pelynomial (i.e., terminating) solutions cxist if and only if

A=—nn+2x+28-1).
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Rearranging terms yields

(1-2) ) +[2B= D= = )= (2x = 1) + (28 - 1) + 2) x ] py'(x)
+a(n+ Qe —=1)+ 28~ 1)+ 1) py(x) =0

which is the differential equation for P#*~"*-Y(x), Thus the equilibrium positions of the
unit charges occur at the zeros of this Jacobi polynomial. [Refs. 8, 13: p. 140]

The zeros of the Laguerre and Hermite polynomials can be developed as solutions
to similar electrostatic equilibrium problems.

F. SPHERICAL HARMONICS

We investigate another application of orthogonal polynomials to problems in
mathematical physics. In Cartesian coordinates (x,, z), the Laplacian operator of a
function u(x, y, z) is defined as

2%u + 3*u + u

Vzu = .
ax* oyt a2t

When converted to spherical coordinates (r, 9, ¢), this operator acting on a function
u(r, 8, ¢) becomes

2, 1 2 1 . 1
(5) Viu= x [(r u ), + — (51110u,,)¢,-1--—--—-Sinz‘9 u“]

where subscripting with », 8, or ¢ denotes partial differentiation with respect to that
variable. A function u is said to be karmonic in a region D if in that region it satisfics

Laplace’s equation: -
Viu=0.

In particular, if the boundary of D is the unit sphere centered at the origin, then using
the method of separation of variables, the Legendre polynomials arise naturally as part
of the solution.

In separation of variables, we assume that the solution will be of the form
(6) u(r, 8, ¢)=/f(r) g(0) h(9).

Substituting (6) into (5) and dividing through by u, we obtain
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L2 1 . 1 -
(7 7 (r I+ zimg (sin0gp + — iy hee=0.

The first term, depending only on r, must reduce to a constant which we write as
v(v+1). Substituting v(v+1) into (7) and multiplying through by sin?@, we have

sin @

v(v+1) sin?6 + 7

(sint,)a+ _,l!‘ h¢¢‘0.

Now we see that the third term, depending only on ¢, must also reduce to a constant;
call it —m?, Substituting —m? for this term and simplifying, we obtain

8 sin’0 gg g + Sin 0 cos @ gy + [ v(v+1) sin’d —m? Jg=0.

By the change of variable x = cos 4, (8) becomes via the Chain Rule

d’g dg 2
2 48 ., 98 __m -
(1-x%) X ax +l:"("+l) - :]8 0.

For problems that are radially symmetric, the ¢ dependencec can be removed by setting
ma= 0, leaving

2 e _, e
9) (1-x%) Py 2e== +v(v+1) g =0,

When v is a positive integer n, (9) is recognized as the differential equation for the
Legendre polynomials. [Ref. 26: pp. 210-213]

An alternate approach to this problem (by the method of images) uses Green's
Junctions. As motivation, consider the Dirichlet problem for the unit circle in the plane,
which involves finding a harmonic function u(r, ) in the unit disk that takes on pre-
scribed function values /(8) on the boundary r = 1. The solution is given by

1 bl 4
(r, )= L £() P0—0") db",

where

1—r
Py)=
) 1-2r cos y-i-r2
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is the so-called Poisson kernel for this problem.
Similarly, the solution to the Dirichier probiem for the wnit spheve i R’

{VII-O
u=f(0.4) on r=1{

can be expressed as

o, =2 [7[Cre.erpn sme ar s

where

(10 [T p—
[1=2r cos y4r* P

and

cos y = cos 0 cos 8’ + sin 0 sin 8 cos(¢ — ¢').

Writing (10) in terms of simpler functions

PO = + 2 [———r———'———, ]
1-2r cos y+r 1=2r cos y+r

we note the appearance of the generating function for the Legendre polynomials, with
x = cos y. Therefore the Legendre polynomials are again part of the solution. [Ref. 27:
pp. 87-89]

Laplace’s equation can also be solved in a higher dimensional setting. Let
X=(x,..,x)eR. Note then that we may. write x=r§, where
r=|x|= \/m and &--‘f-— &1y ., &) € R’ is a unit vector. A polynomial
h,(x) is said to be homogeneous of degree n if A(AX) = A" h(X).

The Laplacian operator acting on a function u(x) in p dimensions is defined as
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As before, a harmonic function is onc which satisfies Laplace’s equation Viu = 0. We
now seek homogeneous harmonic polynomials of degree n in x e R, It can be shown
that there are exactly

Nw=N, »

M+p=-2 [A+p=-13
n n—1

linearly independent such solutions, and they can be characterized by Gegenbauer (or
ultraspherical) polynomials C(t,), k = 1, 2, ..., N. The general solution is given by

hn(x) - hn(r §)=r " sn(g)v

where the spherical harmonic

Sul8) = Z Anp €8T (&m0

k)

with w, suitably chosen unit vectors. Note that if p =3, then these reduce to the
Legendre polynomials found earlier. [Ref. 6: pp. 168-183)

G. GENETICS MODELING

Karlin and McGregor gave an interesting application of the dual Hahn polynomials
to a model in genetics. In this continuous time Markoff chain model, the dual Hahn
polynomials R( A(x);y, 8, V) arise in the transition probability function for the process.

The setting for the model assumes V gametes of type a or A and gives a random
fertilization scheme. The population of either type of gamete is affected by both the
fertilization process and a mutation process whereby a gamete resulting from a mating
can mutate into the other type.

By considering ;he conditional probabilities for an incrcase in population size of
both gamete types, a stochastic process is defined which is a classical birth and death
process. The transition probability function for this last process is then cast in terms
of the dual Hahn polynomials. The interested reader is referred to [Ref. 14] for the de-
tails.
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V1. BASIC EXTENSIONS

A. BASIC HYPERGEOMETRIC SERIES

In this chapter, we extend the structure and some of the results in Chapter IV to a
more general level. This extersion is accomplished by introducing a new parameter
called the base to the hypergeometric series. The base ¢ was used by Heine in a series

(14 (1=¢) oy 4= (1-¢**") (1-¢°) (1-¢"*") N
(1-9) (1-¢°) (1=q) (1=%) (1=¢%) (1-¢*")

(1) 1+

where ¢ % 0, —1, =2, ... [Refs. 28,29]. This series converges absolutely for | x | < 1 when
| ¢ | <1 by the Ratio test. Since

. 1-¢°
@ 4}1-?11 l—¢q

-a’

we see that the serics in (1) tends termwise to the ordinary hypergeometric series as
g— 1. Thus Heine's series is called the basic hypergeometric series or the g-
hypergeometric series. [Ref. 12: p. 3]

The g¢-shifted factorial is the basic extension of the shifted factorial introduced in
Chapter 11 and is defined

1, - n=0
(3) (@;q)p= {(l—a) (1-aq) ... (l_aq"-l); n=1,2,...

The ordinary shifted factorial is recovered by applying (2) and (3) in the limit

(4" 9)n

iy T
We also define
@ (@; 9o =] [ (1-ag"),
k=m0
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a form we will see in later results. Since the infinite product diverges when both a% 0
and | ¢ | 21, we will assume | g | <1 whenever (a; g),, appears unlcss otherwise stated.
[Ref. 12: p. 3] ‘ '

Generalizing the basic hypergeometric series above, we define the ,¢, basic
hypergeometric series (or ,p, series)

Qpy oo s Gy - = (al;q)n-'-(ar;q)n _" " 14s=r _n
© ’¢’[b,,-.-,b,"’"'] 2 Grortn ot (D et

n .
where 2) =n(n—1)/2 and ¢#0 when r>s+ 1. We require that the parameters
b, ..., b, be such that the denominator factors in each term of the series are nonzero.
Since

(@ Q)n=0,n=m+1,m+2,..,

a ¢, series terminates if one or more of the numerator parameters is of the form ¢ for
m=0,1,2,.. and ¢ # 0. When r =s + 1, the expression in (5) simplifies to

o0
ay, .., agy) (@59 (@13 Dn
¢ [ ; ’x]z X .
#1Pl pyiby ,; (95 9)n (b1 @) - (b5 5 )

Note that in a basic hypergeometric series Y ¢, x*, the ratio ¢,,,/c, is a rational function
of g". [Ref. 12: p. 4]

Using the g — shifted factorial (3) and (4), we can define basic extensions for many
of the functions and formulas introduced in earlier chapters. We note that often there
is more than one way to extend a result; examples will be given shortly.

The g-gamma function is defined by

(9} Do

(6) T ) =2 (1-¢q)"™", 0<g< 1.
AR C )™
Gosper showed that
(7) lim_ T (x) = [(x)
g1

for 0 < ¢ <1 [Ref. 30: p. 109]. The structure of the gamma function extends as well.
For instance, the formula
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1-¢*
Cyx+1) = T I 4(x)
can be reduced using (6) to
[(x41) = x T(x).

With (6) we can define the g-beta function

[o(x) To(»)

BQ(x) y) = l—q(x+y)

which by (7) tends to B(x,y) as ¢ — 1~
The g-binomial coefficient is defined for integers » and k by

[:]q T q(): é: 2"4).._& ’

where k=0, 1, ..., n. For nonintegral « and 8, we define

[a] _ @ 9)e (@ 9o

B @5 Doo (4™ 5 9)00
I‘q(a+ 1)

T T,B+D T (a=p+1)

The g-binomial theorem is then

(ab; q)y = Zo [::L b*(a; Q) (b5 et

wheren=0, 1,2, .... [Ref. 12: p. 20]
The next two expressions arc basic extensions of the Chu-Vandermonde formula
(Chapter I1I, Scction F.1) and are both known as the g-Chu-Vandermonde formula:

ghb, cq" | (cbigh
2¢l ¢ 1 4 b (c;q)n
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b | biqn .n
2¢1[q '34.4] ‘M‘b

¢ " 9

[Ref. 12: p. 11}. These forms can be shown to be equivalent by reversing the order of
summation.
Jackson introduced the general form of the g-integral

[[roae=[ roa-["rod

where

o0
a
[ rode=ai-a ) e
n=0
The g¢-—integral defines the measure d¢ which is a natural object for
q — defined functions [Ref. 12: p. 19]. All of the functions and formulas developed above
play an important role in generalizing the ordinary orthogonal polynomial classes.

B. BASIC EXTENSIONS OF ORTHOGONAL POLYNOMIALS

In this section, we present the ¢ — analogue(s) of selccted classes from earlier chap-
ters. By using formulas such as those presented in the previous section together with
methods based on those outlined in the preceding chapters, it is possible to derive the
recurrence relzitions, difference equations, and Rodrigues’ formulas as well as many
other identities satisfied by these ¢ —versions. As mentioned in the previous section, the
¢ — extension of a function is not necessarily unique; however the last two classes listed
are especially . -portant. .

1. Continuous ¢ =Hermite Polynomials

a. Definition

n
CHm Kn=2k)0
I = :
A(xl9) ; @ @ Duie

where x = cos 0,
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b. Orthogonality Relation

I H,(cos81q) Hy(cos 81q) | (5 4)00]? 40 --M
0 (q ’ q)oo
where x = cos 0. [Ref. 12: p. 188]
2. Discrete ¢ —Hermite Polynomials
a. Definition
& (¢:9)
Hy(x;q)= Z '+ 9n (= 1)k gh=h -2

& (@9 D
b. Orthogonality Relation

n

[| Hote: 0 it bt = o) 03 h

where V(x) is a step function with jumps

1x] (5*4%19%)00 (71970
2 (4% 4%

at the points x=+ ¢, j=0, 1, 2,.... [Ref. 12: p. 193]
. 3. g-Laguerre Polynomials
a. Definition

Fora> -1,

(q:-l-l ;q)n q-n
L(‘l) : o e ——— iq,— nta+l .
n (X5 q) @: s 19, qa-H q,—xq

b. Continuous Orthogonality

Omn

Sde L) T(=a) (@5 q),

*® ) . L(ﬂ) . =
fo Lp'(x;q) Ly (x;q) (=(1=g)x: @) Col~a)(g: 9 q"
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¢. Discrete Orthogonality

- Ma+1) ( a+l | )
@( k. 2) [@(ca® g -4 i
k-z“ LE (cq ; q) n (cq ’ 4) (—c(l—q)q' . q)°° (¢ Dn qn "

where

PRLCIT)® (=c(1=9)a""" 5 @)oo (~(1=)/(cq") ; 9)oo
(™" 5 9)ee (~c1=0); e (- £ (1-9) 1 9)ee

[Ref. 12: pp. 194-195)
4. Little ¢ —Jacobi Polynomials
a. Definition

- nel
q , abq
p,.(x;a.b;q)-z¢|[ aq - xq:l

b, Ortheganality Relation

PR N (T "R
;op..(q 1a,b:9)p(q 1 a,b39) N (aq)

_ (a3 9 (1-abg) (bq : @ (abg’ 1 )
 (abq; @y (1-a5¢"™") (aq s @n (aq; @)oo

(a‘I)n ‘sm.n

where 0 < ¢, ag<1[Ref. 12: p. 166}
S. Big ¢ —Jacobi Polynomials
a. Definition

—n, ab n+l, x
P,.(x;a,b.c;q)-g«ﬁ;[q qq 19 q
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b. Orthogonality Relation
oq . _ . oy (xla; q)y, (xlc; @)y
_L Py(x;a,b,c;q) Pyx;ab,c;q) 1 9) (671 D

(95 9)n (1—abq) (bq; @la(abqlciqln . n (,.) )
(abq ; ) (1-abg™*") (aq; @)n (cq ; @) (—ac)™ q\a

mn
where

0 (x/a; Q) (x/c) q)o
a0 (X3 @)oo (bxle; g)g,
aq (1-9) (¢ Q) (10 Q) (@glc ; @)oo (a59% 5 4) o
(29 5 9)o (b9 3 9)os, (cq ; 9)oe, (abGlc s @)y

M=

[Ref. 12: pp. 167-168]
6. g —Krawtchouk Polynomials
a. Definition

- -1_n
q X —a
Kn(x;a-N;‘I)-J'ﬁz[ q-N 0 7 ¢ Q]

b. Orthogonality Relation

N -N
— - (™" 9)x
K, ' 4, ' n X; » H e
Z,o mq e Niq) Kf(q " ia, N q) @

_(N;H) (79 (l + a-l) (—a-qu“ ;‘Q)A
(—a™'sq)a (1 +a7'¢™) (47" i q)a

(-a)*

=(—qa~';q)ya" q

N+l)—n n{n+t) 5
mpn

x (—aq q

[Ref. 12: p. 185]
7. g —Hahn Polynomials
a. Definition

q " abq

n4+1 q-x
v ; vbv v; = y ; ’
Quxia,b,N;q) 3¢2[ — 9 q ]
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b. Orthogonality Relasion

y (ag; q)c (b9 Qy
* . . . 4 X A4 —x— -X
Zoe..(x.a,b.N,q)Qn(x.a.b.N.w o oo (ag)

_ (abg’ i q)wlag)™ _(q:)n(1-abq) (bg; gl (abg™" )
@iy (abq; @ (1-abg™™") (a7 @ (47" s 4)n

L]
x (—aq)" q(z)‘”" Smar M, nmO 1, .. N

[Ref. 12: p. 165]
8. Dual ¢ —Hahn Polynomials

a. Definition

q-—n’ q—x. ¢ qx-N‘
] q! q

Rn(#(x);b’c, N;Q)-J¢2[ q—N. bcq

where u(x) = q* + cqg*-¥
b. Orthogonality Relation

N
Z R, (u(x); b, ¢, N; q) Ry(u(x); b, ¢, N; q)
Xm0

(g™ q)x (1=cg™ ™) (beq; De (73 9)x  wx- ) —x
- I Y q 2/ (—bcq)
@3 e (1=cg™™) (6747 5 9) ( s
(MVe;dn  (9:9)a(bq:9), —M\n
- ) ’ y =m Uy dyaey
(bg: v (bcq; 9n (™" 9)n (™) omas i m=0,1,. N

[Ref. 12: p. 166}
9. ¢ -—Racah Polynomials

a. Definition

q-n' abq"'“. q—x’ cdqx+l
4 9

(8) Pa(ulx); 0, b, ¢, d3q) = 4 [ aq, bdg, cq

where u(x) = ¢g-* + cdg*!
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d. Orthegenality Relation
When aq, bdq, or cq = q* for a positive integer N, then

N
%) z Pm(u(x);a, b,¢,d; q) pp(ulx); 0,8, ¢,d; q) Mx; a,b,¢,d; q) = hy Sy
Xl

where
w(x;a, b,c,d;q)
(10) ___ (cdqiq),(ag; ), (bdg; @)y (cq @)y | = cdg™"!
(9:9)c(a™'cdg; q); (67'cq: q); (dq; q)x (abg)™ 1 —cdq
and
_ (4590 (1-abg) (bq; q)x (ad"'q; q)u (abe™'q s q) (cdg)"
an (abg ; q)n (1-abq™™*") (aq ; @)n (bdq ; 9)s (cq; P)n

(cdg®; g)os (a7'07'¢3 @)un (a7'd5 9)os (6™ 9)ee
(a7'cdq; @)oo (67'¢q3 9)oo (g Do (a™'07'0 7" 1 @)oo

[Ref. 20: p. 1014]. When agq, bdg, or cq is equal to ¢-¥, the infinite products in (11)
reduce to finite products. Hence the orthogonality relation (9) is valid for all ¢ provided
no zZeros are introduced into denominator terms [Ref. 18: p. 4].
.10,  Askey-Wilson Polynomials
a. Definition

Palxia,b,c,d | q)=a" (ab; q),(ac; @)y (ad; q),

(12) - q~", abedg"™", ae®, ae™®
473 ab, ac, ad 6 9

where x = cos § [Ref. 18: p. 3]
b. Orthogonality Relation
For-l<a, b, ¢, d, g<1,

w(x:a,b,c,d| q) dx

3 - "n ‘sm.n

!
?l;'_'l Pm(xiab,c,d | q)po(xia, bc.d | q)
- 1-x




where

[T =222 = 1)¢* + ¢*)
w(x;a,b,¢,d| q)= 'L-Z( x,a) h(x,b) h(x,c) h(x,d)

with
oD
h(x,a) = n (1 - 2axg"* + a’¢™)
k=0

and

_ (abedg®™ ; q),, (abedq™™ ; @)a (4™ @)a (abg" ; @)
" (20" Qoo (adq” 5 @)oo (b2q” i @)oo (4G ; @)oo (cdg” § @)oo

[Ref. 18: pp. 11-14]
We can establish a formal connection betwcen these last two classes. If the
q —Racah polynomials are written

¢ q-'ﬂ' aab'qﬂ+|’ q-x. cpdqﬂl.
a3 a'q, b'd'q, c'q 9

and the following parameter changes are made:

=B o bd L ab -l
a q ’b q Dc q .d b.

(or likewise using any permutation of { b, ¢, d} assuming at least one of these is non-
zero), as well as the change of variable ¢-* = ae?, then we obtain

6 ¢, abcdg™™", ae®, ae"’.
3 ab, ac, ad 4 q

with

H(X) - q-x + qI‘P'cod
= ae'? +ae™ = 2a cos 0
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That is, the ¢ —=Racah and Askey-Wilson polynomials are vmually the same, differing
only in their parameters, normalization, and variable.

Because the ¢ —Racah and Askey-Wilson polynomials are essentially the
same, the names are often used interchangcably in the literature. We have prescated
these polynomials as distinct classes in order to emphasize the continuous and discrete
natures as expressed in the orthogonality rclations.

As stated at the beginning of Chapter 1V, the “classical orthogonal
polynomials” are defined to be those which are special or limiting cases of the Askcy-
Wilson (21) or ¢ ~Racah polynomials (18) [Ref. 31: p. §7}. We can now make this
statement a hit more precise. Letting

amq® , bmg? , cmqg |, d=g’

in (9) and (10) and taking the limit as ¢— 1, the ordinary Racah polynomials
R(A(x);a, B,y,6) and their weight function as dcfined in Formulas (30) and (32),
Chapter 1V, Section C.3 are retricved. A similar limiting process will recover any ordi-
nary orthogonal polynomial class from its ¢ —extension. Moreover, any ¢ —extension
previously discussed is a special or limiting case of the ¢ —Racah. For example, letting
cq= ¢~V and d = 0 produces the ¢ —Hahn, etc. In this way, we see that the self-dual
¢ —Racah polynomials encompass all the previous classes. They also satisfv three-term
recurrence relations, second order difference equations, and Rodrigues’ formulas with
respect to ¢ —divided difference operators. The interested reader is referred to [Refs. 13,
12, 20] for details about these very rich classes.

C. CONCLUDING REMARKS

In Chapter V, we presented a few of the traditional applications in which orthogonal
polynomials have played an important part. More recently, an enriching interplay has
developed between the theory of orthogonal polynomials and other mathematical and
mathematically-rclated areas.

Efficicnt computational methods have becn deviscd for determining the many uscful
quantities associated with orthogonal polynomials (such as their zeros, recurrence coef-
ficicnts, ctc.) [Ref. 32: pp. 181-216]. Various classes of orthogonal polynomials have
also played a role in digital signal processing [Refl 32: pp. 115-133), quantum mecchanics
[Ref. 32: pp. 217-228), and birth, dcath processes [Ref. 32: pp. 229-255). Advances in the
ficld of combinatorics and graph theory have allowed new gecometric interpretations of
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orthogonal polynomial identitics, some of which have very important consequences for
“association schemes” and the designs of codes [Refs. 33, 16, 34, 32 : pp. 25-53, 35).

Physicists have introduced various versions of "diagrammatic methods™: ways of
understanding orthogonal polynomials through 3-j and 6-j symbols, their generaliza-
tions, and accompanying identities by formally associating them with pictorial schemat-
ics representing forces of physical systems that conserve angular momentum {Ref. 36}.
Powerful new techniques involving “quantum groups” have been used to generate ncw
identitics for some classes [Ref. 32: pp. 257-292). Further investigation into the
electrostatics problemn discussed in the text has led to the formation of the famed
“Selberg beta integral” and its generalizations. It has yielded to analysis via the study
of the “root systems” of Lie algebras, and has found applications ranging from statistical
mechanics to computer algorithm complexity [Refs. 30: pp. 48-52, 32: pp. 311-318, 37).

Finally, research into the general structure of ¢ —series has led to many surprising
connections, and is intimately rclated to the many remarkable and powerful number-
theoretic formulas discovered by S. Ramanujan, the famed Indian mathematical prodigy
[Refs. 30: pp. 87-93, 38: pp. 55-66, 39).

This utility and promise of future applications provide ample motivation and justi-
fication for continued study of the intrinsic structure of orthogonal polynomials.
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